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中文摘要 

 

資產配置對產險公司的營運很重要。資產配置會影響產險公司的收益、風險、財務

健全度、甚至保費的釐定。因此不論是產險公司的經理人、股東、監理機關、以及評等

公司都很注重產險公司的資產配置。 

學術界提供了兩大類的資產配置方式：效率前緣分析以及動態控制法。前者是在單

期的架構下分析投資組合的期望報酬率與風險，忽略了其他的統計量，多期來看也通常

得不到最佳的結果。動態控制法在理論上無懈可擊，可是只能在極特殊的假設下才能求

出封閉解，數量方法也只能處理少數幾個狀態變數，因此在實務上幾乎沒有實用價值。

想跳脫效率前緣單期的架構，又不想落入動態控制執行困難窘境的業者，大多先以效率

前緣的方法先求出第一期的資產配置，然後隨著市場的變化，再定時或不定時地回歸第

一期的配置。此外，財務的文獻在討論資產配置時都沒有考慮到產險的業務，而保險的

文獻也沒有人討論到產險公司的最適資產配置。 

本計畫利用近年來在作業研究領域有長足發展的模擬最佳化，求解產險公司可能的

最適資產配置。我們先開發產險公司的營運模擬程式。這類的程式在歐洲被稱為內部模

型，在美國則是用於動態財務分析。程式中產險公司可以投資於現金、各種到期時間的

公債、股票、以及不動產，其業務則有長尾與短尾兩大類，其損失發展期間各為十期與

三期。模擬的期間是 26 期。寫好產險公司的模擬程式後，我們再以基因演算法以及演化

策略法，在國家高速電腦中心的電腦上，以平行處理的方式，藉著多次的模擬，找出可

能的最適資產配置。經過仔細的比較後，我們確定利用模擬最佳化所找出的解，比運用

效率前緣或回歸法的結果還好。因此，這個計畫的結果除了對保險文現有貢獻之外，還

有潛在的實用價值。 

本計畫的結果至少可以產生三篇學術論文。第一篇已經投稿出去，第二篇即將完成，

第三篇也已經有完整的結果了。 

 

 

 

關鍵詞：產險公司、資產配置、模擬最佳化 
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Abstract 

 

Asset allocation is imperative to property-casualty (P/C) insurance companies.  It 

affects an insurer’s return, risk, solvency, and even premium setting.  Various stakeholders 

including managers, shareholders, regulators, and rating agencies pay close attention to the 

asset allocation of the P/C insurer.  

The literature provides two ways for asset allocation: efficient frontier analysis and 

dynamic control method.  The former analyzes a portfolio’s return and standard deviation 

under a single-period framework.  This method ignores other statistics of the outcomes and 

generates sub-optimal results in multiple periods.  Dynamic control method is theoretically 

sound.  However, closed-form solutions can be obtained under rare circumstances and 

numerous methods can handle only few state variables.  Investors who want to execute 

multi-period asset allocation rely on the so-called re-balancing methods.  This method has no 

theoretical justifications though.  Furthermore, the finance literature does not take the 

underwritten businesses into account.  The insurance literature, to our knowledge, provides no 

reference for the optimal asset allocation of P/C insurers. 

This project utilizes one of the recent advances in operational research, simulation 

optimization, to search the optimal asset allocation of a P/C insurer.  We first develop a 

program to simulate the operations of the insurer.  The simulated insurer can invest in cash, 

bonds with different maturities, stock, and real estate.  The insurer underwrites both short- 

and long-tail businesses.  The simulation goes on for 26 periods.  Then we apply the genetic 

algorithms (GA) and evolution strategies (ES) upon the developed program to solve the 

optimization problems.  We employ parallel computation to simulate sufficiently large 

number of simulations to secure the robustness of our optimization search.  The resulted 
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allocations do perform better that the ones obtained using the efficient frontier and re-balancing 

methods.  Our results thus have potential practical value in addition to the contribution to the 

insurance literature. 

This project will results in at least three journal articles.  We have submitted one paper 

to an international journal and are wrapping up the second one.  The results for the third paper 

are in hands already. 

 

 

 

Keywords: property-casualty insurance companies; asset allocation; simulation optimization 
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報告內容 

 

以下的內容分為三節。第一節是一篇由本計畫產生的審查中論文1。第二節則是由本

計畫產生的第二篇論文，剛完成初稿。第三節是打算用來寫第三篇論文的結果。 

 

 

                                                 
1 這一篇文章也是本計畫的期中報告內容。 
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第一節 

 

 

 

Combining Dynamic Financial Analysis with Simulation Optimization to 

Solve the Asset Allocation Problem of the Property-Casualty Insurer a

 

 

Tzu-Yi Yu b

Department of Information Management 

National Chi Nan University, Nantou Hsien, Taiwan, R.O.C. 

 

Chenghsien Tsai 

Department of Risk Management and Insurance 

National Chengchi University, Taipei, Taiwan, R.O.C. 

 

Chuen-Lung Chen 

Department of Management Information System 

National Chengchi University, Taipei, Taiwan, R.O.C. 

 

                                                 
a The authors are grateful to Jia-Le Lin for his competent programming assistance, to National Center for 
High-Performance Computing of Taiwan for using its facility, and to the National Science Council of Taiwan for 
its financial support (project number NSC 94-2416-H-004-041). 
b Corresponding Author.  No. 1, University Road, Puli, Nantou Hsien, Taiwan, 545, R.O.C.  
Tel.: +886-49-291-0960-4823; fax: +886-49-291-5205.  E-mail: tyyu@ncnu.edu.tw.   
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ABSTRACT 

 

Dynamic financial analysis (DFA) is a useful decision-support system for the insurer, but it 

lacks optimization capability.  The contribution of this paper is that it incorporates a 

simulation optimization technique into a DFA system.  With the ability to optimize, the DFA 

system proposed in this paper was able to solve the asset allocation problem of a 

property-casualty insurance company.  The simulation optimization technique used herein is a 

generic algorithm, and the optimization problem is a constrained multi-period asset allocation 

problem.  We find that coupling DFA with simulation optimization resulted in significant 

improvements over a basic search method.  The result was robust across random number sets.  

Furthermore, the resulting asset allocation changes with the parameters of the risk models as 

well as the insurer’s specifications in a way that is consistent with the differences in the 

parameters.  Incorporating optimization features in DFA is therefore feasible, useful, and 

robust and should create considerable interest in the insurance industry.     

 

 

 

Keywords: dynamic financial analysis; simulation optimization; asset allocation  

JEL Classification: G22, C61 
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I. INTRODUCTION 

How to manage a property-casualty (P&C) insurance company is a major issue for 

various stakeholders including managers, shareholders, policyholders, and regulators.  More 

specifically, the concerns are as to how a number of factors such as asset allocation, trading 

styles, capital structure, business growth, business allocation, reinsurance arrangement, and 

other decisions affect the value and the solvency of a P&C company.  Assessing these various 

decisions is difficult, however, because a P&C insurance company is subject to double-sided 

uncertainties: the liability risk as well as the asset risk.  In addition to the uncertainty 

regarding asset values, P&C insurance companies do not know how much they will have to 

pay for the products they sold.  A comprehensive tool that simultaneously assesses both the 

liability and the asset risks of a P&C insurer is essential to competent and sound management. 

The dynamic financial analysis (DFA) system is promising.  A company-wide DFA 

system can simulate the distribution of an insurer’s surplus/equity at some point of time in the 

future under various assumptions about the insurer’s underwriting and investment strategies, 

the underwriting outcome, and the evolution of the financial markets.  An insurer’s value and 

risk/solvency can then be defined upon the simulated surplus distribution, and people can use 

the simulated surplus distribution to make choices among alternative strategies.  More 

specifically, a DFA system is capable of incorporating an insurer’s new businesses, the 

uncertain payments for the insurance products sold, the insurer’s asset allocation/disposition 

decisions, and the stochastic returns of financial assets to dynamically simulate the evolution of 

the insurer’s financial conditions.  Alternative underwriting and/or investment strategies can 

then be compared based on how they affect the development of the insurer’s financial 

conditions.  For instance, an insurer can use a DFA system to assess asset allocation strategies 

by examining the impacts of alternative strategies on the surplus distribution over a target time 

horizon.  The DFA system therefore can help managers make investment and business 

decisions in a comprehensive and robust way.  
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The DFA system has two major advantages over the commonly used financial ratio 

analysis and other static analyses.  First, a DFA system can incorporate future external 

changes and internal decisions in addition to the information embedded in financial ratios.2  It 

is therefore superior to static analyses for profiling an insurer’s financial strength.  Second, a 

DFA system explicitly considers the relations among risk factors and financial variables.  Risk 

factors such as interest rates, equity asset prices, and real estate prices are correlated.  The 

values of an insurer’s various types of assets are thus correlated with each other as well.  

Financial variables are further bound by two simple equations: 

t
i j

tjti SurplusLiabilityAsset =−∑ ∑ ,, , and      (1) 

t
i j

tjti SurplusLiabilityAsset ∆=∆−∆∑ ∑ ,,       (2) 

, where Asseti,t and Liabilityj,t represent the values of individual asset and liability items at time 

t respectively, and ∆(.) denotes the change of the variable.  The first equation depicts the 

fundamental relations among financial variables at any point in time; the second equation 

captures the dynamic relations among the variables across time.  The financial ratio analysis 

and other static analyses have difficulties in taking full account of the correlations, fundamental 

relations, and dynamic relations among the variables.   

The construction of a DFA system for the P&C insurance company dates back to almost 

two decades ago.  Insurance and actuarial scholars started conceptual discussions in the late 

80s (Pentikainen, 1988; Taylor and Buchanan, 1988; Coutts and Devitt, 1989; Paulson and 

Dixit, 1989; Taylor, 1991).  The British Institute of Actuaries Working Party on Insurance 

Solvency and actuaries soon developed P&C insurance company simulation models that could 

be used to evaluate the solvency of a company (Daykin et al., 1989; Daykin and Hey, 1991; 

Daykin, Pentikainen, and Pesonen, 1994).  The Casualty Actuarial Society of the United 

                                                 
2 The information embedded in financial ratios is taken into account in the DFA system in the form of the initial 
position inputs. 
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States embarked upon a long-term, multi-stage project entitled “Dynamic Financial Analysis” 

in the mid 90s.  Starting from identifying risk factors and variables, this project not only 

developed general specifications for insurance company financial models but also studied 

refined issues such as model parameterization, result interpretation, and management/strategic 

usage.  The potential of a DFA model was demonstrated by Cummins, Grace, and Phillips 

(1999) in which the scenario analysis conducted using a simple cash flow model outperformed 

the early warning and capital requirement systems employed in the United States for the P&C 

insurance company.  

The DFA system, albeit powerful, tells us only which proposed strategy is better.  It 

cannot tell us what the optimal strategy is.  The DFA system generates surplus distributions, 

given users’ input about initial positions and strategies.  It does not have the 

mechanism/algorithm to search for the optimum.  Managers therefore have to make educated 

guesses on what the optimal strategy looks like and employ the trial-and-error method to shoot 

for a good strategy.  Trying all possible strategies to seek for the optimum is infeasible due to 

the large number of decision variables.  A DFA system without an optimization mechanism is 

therefore incapable of helping managers maximize the shareholders’ value.  The goal of this 

paper is to illustrate how to couple the technique of simulation optimization with a DFA system 

so that an insurer can use the improved DFA system for making optimal decisions. 

Simulation optimization is the process of determining the values of the controllable 

input variables that optimize the values of the stochastic output variables generated by a 

simulation model.  The controllable input variables, also called decision variables, in the case 

of a DFA may include asset allocation, trading frequency, rebalancing interval, capital structure, 

business growth, business allocation, and reinsurance arrangement.3  The output variables, 

also called the response variables, are usually a function of the expected value of simulated 

                                                 
3 A simulation model might also have parameters that are not controllable.  For instance, the financial market and 
the underwriting market parameters are uncontrollable inputs in the DFA system. 
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surplus, insolvency probability, and other concerns of the board (e.g., meeting the capital 

requirement).  The simulation model itself (a DFA system in this paper) can be thought of as a 

complex function mapping controllable input values to response values.4  In short, the 

simulation optimization problem can be characterized as a stochastic search over a feasible 

exploration region (Keys and Rees, 2004).5

Tekin and Sabuncuoglu (2004) classified the techniques for simulation optimization 

into two main headings: local optimization and global optimization.  Local optimization 

techniques assume that response values have a uni-modal surface.  Some of them are iterative 

while some require gradient information.  Therefore, when the response surface is 

high-dimensional, discontinuous, and/or non-differentiable, local optimization techniques are 

often trapped into a local optimum and fail to find the optimal solution.  On the other hand, 

global optimization techniques such as evolutionary algorithms, simulated annealing, and tabu 

search can be applied to these types of problems, and they are designed for problems with 

multi-modal response surfaces.   

The contribution of this paper is applying one of these global optimization techniques 

to a DFA system to solve the asset allocation problem of the property-casualty insurance 

company.  Our DFA system contains four asset classes (cash, bonds, stocks, and real estate) 

and two types of insurance businesses (long- and short-tail businesses) to capture the essence 

of the insurance company’s operations.  Although the DFA system is simple when compared 

with commercial packages, it is complex enough to preclude one from finding optimal decision 

                                                 
4 Due to its stochastic nature, repeated runs of the model lead to different outputs even when using the same 
values of controllable inputs.  The average value of the output is often calculated, and the deviations from the 
average are subsequently analyzed. 
5 The feasible region is defined by the practical limits on the ranges of the controllable inputs.  Examples of 
practical limits include short-sale constraints and upper bounds on portfolio weights faced by most financial 
institutions.  The optimization problem is difficult to solve for several reasons.  First, the function represented 
by the simulation model is almost always unknown.  Second, the deviations from the average are usually 
significant, heterogeneous over the feasible region, and not normally distributed.  Third, the feasible region is 
usually large because of the large number of controllable variables. 
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variables analytically.6  We therefore resort to some of the recent developments in simulation 

optimization.  We choose one of the most popular evolutionary algorithms (EAs), the genetic 

algorithms (GAs), to optimize our DFA system.  EAs work on a population of solutions in 

such a way that poor solutions become extinct while good solutions evolve to reach for the 

optimum.  The most popular EAs are GAs, evolutionary programming (EP), and evolution 

strategies (ES).  EP and ES have not yet been widely used in simulation optimization, but 

GAs have been successfully applied to the optimization problems arising in complex 

manufacturing systems (Tekin and Sabuncuoglu, 2004).  In our simulation optimization 

problem, the objective function incorporates the expected discounted surplus as well as the 

insolvency probability.  This objective function will result in an asset allocation that balances 

return with risk.  The optimization problem is formulated as a multi-period one with 

short-sale constraints.7     

Our results show that the application of simulation optimization to DFA is feasible, 

useful, and robust.  Our GA introduces a significant improvement over a basic search method.  

The resulting “optimal” asset allocations look reasonable without extreme positions.8  

Furthermore, our method is robust across different random numbers.  The value of the 

objective function is insensitive to the generated random numbers.  Different parameter sets 

result in different optimal asset allocations, as expected, and the changes in the optimal 

solutions are comprehensible with respect to the differences in the parameters.  Therefore it 

can be concluded that the application of simulation optimization in DFA is successful.        
                                                 
6 The impossibility is due to three reasons.  First, the system contains several types of stochastic processes.  The 
function represented by the simulation model is thus unknown.  Second, the variations of the outcomes generated 
by the system are significant, heterogeneous over the feasible region, and not normally distributed.  Third, the 
system has 12 controllable variables over real intervals.  The feasible region is therefore large.   
7 Such a problem is difficult to solve.  It can be attacked by the methods of dynamic programming, and the 
solutions are characterized by the Hamilton-Jacobi-Bellman (HJB) partial differential equations.  However, the 
HJB equation has only been solved in few specific cases.  Even if the solution can be obtained, the required 
long-winded technicalities are awkward for practical uses.  The short-sale constraints make the problem even 
more difficult.   
8 Readers should be aware that simulation optimization is a heuristic search method.  The existence of the 
optimal solution is not proven, and there is no verification theorem to show that the resulted solution from 
simulation optimization is at least as good as all other solutions.  The word “optimal” is used loosely in this 
paper to mean “the best known solution.”   
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The rest of this paper is organized as follows.  Section 2 describes our DFA system, 

including the setting of the financial markets and insurance markets, the dynamics of the 

representative insurer’s financial positions, and the optimization problem of the insurer.  In 

Section 3 our genetic algorithm is described in detail.  It starts with an introduction to 

simulation optimization and is followed by a brief review on genetic algorithms and a detailed 

description of our proposed algorithm.  The application results are discussed in Section 4.  

We first provide the simulated interest rates, equity index, and real estate index to display some 

outputs of our DFA system.  Then we demonstrate a basic searching method for the 

single-period asset allocation problem and end section 4 with analyzing the results using our 

GA.  Finally, in Section 5 we make our summaries and draw our conclusions.    

II. THE DYNAMIC FINANCIAL ANALYSIS SYSTEM 

A. The financial markets and the insurance markets 

In this section, we set up five types of markets and specify their stochastic processes.  

We assume that the risk-neutral process for the one-year spot rate at time t, r(t), is: 

( ) ( ) Wdtrdttrmqtdr r )()( σ+−=                    (3) 

, where t is zero or a positive integer,  stands for the long-term average of spot rates,  

reflects the speed of mean reverting (

m q

10 << q ), ]0000[vr =σ , and 

][ )()( ′= SLRLLRRESr dWdWdWdWdWWd .  Wd  represent the differentials of 

five-dimension Wiener processes including the processes of the one-year spot rate (r), the 

equity index (S), the real estate index (RE), the loss ratio of the long-tail insurance liabilities 

(LR(L)), and the loss ratio of the short-tail lines (LR(S)).  It has a correlation matrix ℜ 

specifying the correlations among the Wiener processes.  The mapping from short rates to 

Treasury bond prices has been derived in Cox, Ingersoll, and Ross (1985): the price at time t of 

a default-free zero-coupon bond that pays $1 at time T equals 

rtTB
T etTArtP )(

0 )(),( −−−=       (4) 
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The equity index is assumed to evolve according to the following interest-rate-adjusted 

geometric Brownian motion process: 

Wddttr
tS
tdS

SS σπ ++= ))((
)(
)(                  (5) 

, where the constant parameter Sπ  denotes the risk premium on the stock index investment, 

and ]0000[ SS σσ = .  We assume that the real estate index follows a geometric 

Brownian motion: 

Wddt
tRE
tdRE

REσµ +=
)(
)(                  (6) 

, where the constant parameter µ  denotes the expected return of the real estate investment per 

period with continuous compounding, and ]0000[ RERE σσ = .  

In the insurance markets, insurers underwrite both long-tail and short-tail businesses.  

We assume that the loss ratio of the long-tail businesses follows: 

WdtLdLR LLR ×= )())(( σ        (7) 

, where ]0000[ )()( LLRLLR σσ = .  The loss ratio of the short-tail lines has a similar 

process to equation (7) with a different volatility ]0000[ )()( SLRSLR σσ = .  

The parameters for the above five models are specified as follows. 

        

Model Parameters 

Short Rate m  = 6% q  = 0.3 v  = 2% 
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Equity Index Sπ  = 6% Sσ  = 20%  

Real Estate Index µ  = 15% REσ  = 35%  

Loss Ratio (Long) mean = 75% )(LLRσ  = 30%  

Loss Ratio (Short) mean = 80% )(LLRσ  = 25%   

The starting value of the short-term interest rate is 6%.  Furthermore, the correlation matrix ℜ 

is specified as follows.9

 dWS dWr dWLR(L) dWRE

dWS 1 -0.31 -0.19 0.36 

dWr -0.31 1 -0.004 -0.03 

dWLR(L) -0.19 -0.004 1 -0.47 

dWRE 0.36 -0.03 -0.47 1 

 

B. The dynamics of the insurer’s financial status 

Suppose that a newly established property-casualty insurer starts to underwrite 

insurance businesses with a surplus of IS(0) million dollars.  It receives premiums of IP(0) 

million dollars in cash at the beginning of year 1 with B(0) ( 1)0(0 ≤≤ B ) being the proportion 

of the businesses in the long-tail lines.  To underwrite these businesses, the insurer incurs and 

pays underwriting expenses in cash and upfront.  The underwriting expense ratios of the long- 

and short-tail businesses are assumed to be Exp(L) and Exp(S) respectively, where both ratios 

are positive but smaller than one.   

The remaining cash and the initial surplus are then invested in cash, Treasury bonds, 

equity index, and real estate index with the proportion vector )0(θ , where 
                                                 
9 The correlation coefficients are estimated using the historical data on S&P 500 index, Indexes of All Publicly 
Traded REITs, Treasury Bill Rates, and the loss ratios published in Best’s Aggregates and Averages.  The 
sampling period is from 1972 to 1999.  dWLR(S) is not in the matrix because we assume that the loss ratio of 
short-tail businesses is independent of other processes.  
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[ ]′= )0(    )0()0()0()0( 4321 θθθθθ , )0(1θ , )0(2θ , )0(3θ , and )0(4θ  is the proportion of 

the wealth invested in cash, equity index, Treasury bonds, and real estate index respectively.  

Obviously .  We further assume that ∑ = =4
1 1)(i i tθ 0)( ≥tiθ  since insurers are almost 

always subject to short-sale constraints from regulation.  The maturity of invested bonds 

ranges from one year to fifteen years, and the invested proportions are assumed to be even 

across the maturities for the sake of simplicity.  Assuming that the fair value of the reserves 

equal to the premiums written net of expenses, we get the following balance sheet of the 

insurer at the beginning of year 1: 

        

Assets Liabilities and Surplus 

Cash $ ( )0(1θ *Total Assets) 
Liabilities of  

Long-Tail Businesses 

$ B(0) * IP(0) * 

(1-Exp(L)) 

Stocks $ ( )0(2θ *Total Assets) 
Liabilities of  

Short-Tail Businesses 

$ (1- B(0)) * IP(0) * 

(1-Exp(S)) 

Treasury 

Bonds 
$ ( )0(3θ *Total Assets)   

Real Estate $ ( )0(4θ *Total Assets) Surplus $ IS(0) 

Total Assets  

$ (IS(0) 

+ B(0)*IP(0)*(1- Exp(L)) 

+ (1-B(0))*IP(0)*(1- 

Exp(S))) 

Total Liabilities and 

Surplus 

$ (IS(0)+ B(0) * IP(0) * 

(1- Exp(L))  

+ (1-B(0)) * IP(0) *  

(1- Exp(S))) 

    

At the end of the year, investment returns and loss ratios are realized according to the 
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stochastic models in section A.10  To account for loss development and business growth we 

assume that the insurer’s long-tail businesses grow G(L) annually and have a ten-year 

development period with a loss development function DL(dy), where dy = 1, 2, 3, …, or 10, 

, and .  The short-tail businesses have an annual growth 

rate of G(S) and a three-year development period with a loss development function D

1)(0 ≤≤ dyDL 1)(10
1 =∑ =dy L dyD

S(dy), 

where dy = 1, 2, or 3, , and .  Simulated loss ratios 

represent a multiple of the ultimate loss divided by the premiums written, where the ultimate 

losses for the businesses written in any given year are defined as the total payments across all 

development years paid for the written businesses

1)(0 ≤≤ dyDS 1)(3
1 =∑ =dy S dyD

11.  More specifically, the ultimate losses for 

the businesses written in year t equal 
Factor AdjustmentAn 

Year tin  Written Premiums  Ratio Loss Simulated × .  

The loss payment in development year dy for the businesses written in year t is then equal to 

the t-th year’s ultimate loss times DL(dy) or DS(dy). 

To pay losses, the insurer sells assets proportionally.  Specifically, we assume that the 

insurer sells each type of invested assets, including cash, Treasury bonds, stocks, and real 

estate by the proportion of the asset’s market value to the total asset’s value.  The asset 

allocation of the insurer will thus be unaffected by the sale of assets.  We then deduct the 

amount of losses paid from reserves and attain the year-end balance sheet for year 1.12

At the beginning of year 2, the insurer underwrites IP(1) million dollars of businesses, 

pays underwriting expenses for long- and short-tail businesses, and invests the net amount in 

                                                 
10 We assume that the return on cash is r(t).   
11 The multiple, also called the adjustment factor in the paper, is to account for the effect of growth and time value 
of money.  For an insurer that does not have growth in premiums written, calendar-year loss ratios are equal to 
the ratio of the ultimate losses to the premiums written.  For a growing insurer, however, calendar-year loss ratios 
will be less than the ratio of the ultimate losses to the premiums written because the denominators of loss ratios 
grow with time.  Furthermore, time value of money should be considered.   
12 Reserves might be smaller than loss payments in extreme cases.  We set reserves as zero in these cases and 
deduct the deficit from surplus. 
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cash, Treasury bonds, stocks, and real estate with the proportion vector )1(θ .13  Our 

simulation model then generates investment returns and loss ratios for year 2.  The insurer 

pays losses at the end of year 2 by selling all types of assets proportionally.  Reserves are 

reduced by loss payments, and we obtain the year-end balance sheet for year 2 thereafter.  

Similar procedures are repeated for twenty-five years, or, repeated until the insurer becomes 

insolvent.  The insurer is deemed insolvent whenever its surplus (IS(t)), the difference 

between the market value of assets and the fair value of reserves, is smaller than zero.     

The parameters of the representative insurer are set as follows: IS(0) = 120, IP(0) = 200, 

B(0) = 50%, Exp(L) = 25%, Exp(S) = 20%, G(L) = 5%, G(S) = 4%, and 

                      

dy 1 2 3 4 5 6 7 8 9 10 

DL(dy) (%) 50 30 10 5 3 1 0.5 0.3 0.1 0.1 

DS(dy) (%) 80 15 5        

.14  The above parameters and the parameters of the underlying risk models are chosen so that 

the insurer has an “adequate” insolvency probability to facilitate subsequent analyses.  We 

tried various sets of parameters and learned that the key variables to the insolvency probability 

are the initial premium-to-surplus ratio, sum of the expense ratio and expected loss ratio, 

growth rate, returns of investments, and volatilities of risks.  As expected, higher leverage 

ratios, combined ratios, and/or volatility of risks result in higher insolvency probabilities while 

higher expected investment returns lead to fewer bankruptcies.   

C. The optimization problem 

We assume that the insurer’s objective is to maximize a utility function over the time 

horizon [0, H].  The utility function consists of two components: expected discounted surplus 

                                                 
13 Notice that IP(t+1) = IP(t)*B(t)*(1+G(L)) + IP(t)*(1-B(t))*(1+G(S)). 
14 After a simple spreadsheet work, we obtain an adjustment factor of 0.9449 for the long-tail businesses given a 
growth rate of 5%, a discount rate of 7%, and the specified DL(dy).  The adjustment factor for the short-tail 
businesses is 0.9905 given a growth rate of 4%, a discount rate of 7%, and the specified DS(dy). 
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and ruin probability.  The insurer prefers high expected discounted surplus but low ruin 

probability.  More specifically, the optimization problem of the insurer is: 

)_(
)]

)1(
)((1[

1 1

)(
max xyprobabilitruink

I
s
tIS

H

I

i

H

t
t

t
−−

+
∑ ∑
= =

θ
    (8) 

, where I is the number of the simulated paths in which no insolvency occurs, s is a constant 

chosen subjectively by the insurer to discount future surplus IS(t), k is also a constant chosen 

by the insurer to reflect the relative importance of excessive insolvency probability to expected 

discounted surplus, and x is the tolerable insolvency probability of the insurer.   

The decision variable used to maximize the objective function is the asset allocation 

.  Allocating more funds to high-risk types of assets may result in higher expected 

surplus.  It will however also result in higher ruin probability at the same time, which may not 

be optimal.  A low ruin probability can be achieved by allocating more funds to low-risk 

assets.  Such a strategy may not generate adequate returns for shareholders on the other hand.  

Therefore, the optimization problem can be deemed as a search for the optimal balance 

between risk and return through asset allocation.   

)(tθ

In the following simulation, we set H at 25 years and the number of simulated paths at 

5,000.  The discount rate for future surplus per period s is assumed to be 3%, k is chosen to be 

, and x = 2%.  Without loss of generality of the multi-period asset allocation problem, 

we reduce the optimization problem from 25 years to 4 periods for the sake of computation 

time.

10104×

15  More specifically, the insurer makes asset allocation decisions at t = 0, 6, 12, and 18, 

and keeps the allocation the same as the previous year’s at all other times.  The number of 

controllable variables is thus reduced to 12.  A single-period asset allocation problem will 

have only three controllable variables, which may be solved using other simpler techniques.  

III. THE SIMULATION OPTIMIZATION TECHNIQUES 
                                                 
15 The last period starting from the fourth asset allocation is therefore 7 years. 
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A. An introduction to optimization via simulation 

To solve the optimization problem set up in section II, we make use of the simulation 

optimization techniques.  Optimization in the field of operations research has long been 

synonymous with mathematical programming.  Due to the rapid advances in computational 

efficiency, there are now many techniques to optimize stochastic systems via simulation.  

Generally the problem setting is the following parametric optimization problem: 

)(max θ
θ

J
Θ∈

        (9) 

, where )],([)( ωθθ LEJ =  is the performance measure of the problem, ),( ωθL  is called the 

sample performance, ω represents the stochastic effects of the system, θ is a p-vector of 

controllable variables, and Θ is the constraint set on θ.  Let us also define the optimum as 

.   )(maxarg* θθ
θ

J
Θ∈

=

Various simulation optimization techniques have been proposed to solve the above 

optimization problem.  Several survey papers such as Fu (1994), Andradottir (1998), and 

Tekin and Sabuncuoglu (2004) have provided comprehensive coverage on the foundations, 

theoretical developments, and applications of these techniques.  Existing techniques can be 

classified into two types: local optimization and global optimization.  Local optimization 

techniques are further classified in terms of discrete and continuous decision spaces.16  Figure 

1, copied from Tekin and Sabuncuoglu (2004), demonstrates the aforementioned classification 

scheme.    

The major difference between local and global optimization techniques lies in the 

assumption about the shape of the response value surface, i.e., uni-modal or multi-modal.  

Local optimization techniques are therefore not suitable for those cases in which the function 

represented by the simulation model is complex and multimodal.  These algorithms are 
                                                 
16 In a discrete space, decision variables take a discrete set of values such as the number of machines in a system.  
The feasible region in a continuous space, on the other hand, consists of real-valued decision variables such as the 
release time of factory orders.   
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usually trapped in a local optimum and generate poor solutions, without an effective method to 

find good initial solutions.  Global optimization techniques are developed to help a search 

escape from the local optimum.  In the SCI and SSCI database we found over four thousand 

technical papers demonstrating that global optimization techniques such as tabu search, 

simulated annealing, and evolutionary algorithms can help the search escape from local 

optimum and produce better solutions.  

Among the global optimization techniques, we chose evolutionary algorithms (EAs) for 

the DFA system.  Using EAs in simulation optimization is on the increase lately because they 

require no restrictive assumptions or prior knowledge about the shape of the response surface 

(Back and Schwefel, 1993).  In general, an EA has the following procedures: generate a 

population of solutions, evaluate these solutions through a simulation model, perform the 

selection, apply genetic operators to produce new offspring, and insert the new offspring into 

the population.  These steps are repeated until some stopping criterion is reached.  

The most popular EAs are genetic algorithms (GAs), evolution programming (EP), and 

evolution strategies (ES).  These algorithms differ from each other in the representation of 

individuals, the design of variation operators, and the selection of their reproduction 

mechanisms.  In general, each point in the solution space is represented by a string of values 

for the decision variables.  The crossover operator breaks the strings representing two 

members of the population and exchanges certain portions of the strings to create two new 

strings.  The mutation operator selects a random position in a string and changes the value of 

that variable with a pre-specified probability.  Appropriate crossover and mutation operators 

can reduce the probability of being trapped in a local optimum.  

Among the GAs, EP, and ES, we chose to employ a GA to optimize the DFA system.  

The main reason for the choice was that GAs have found more applications for the optimizing 

problems in complex systems than either the EP or the ES.  Also, we have applied GAs to 

several discrete optimization problems before (Chen et al. 1995, Chen et al. 1996, Chen et al. 
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2003).  The following section gives a brief introduction on GAs and describes our GA in 

detail.      

B. Genetic algorithms 

The search procedure of GAs combines reproduction and recombination to mimic the 

process of natural evolution.  An optimization problem solved by GAs can be explained as 

follows.  The solution space of the problem is viewed as the environment of evolution.  A 

solution of the problem is a member of a species in the environment.  A generation of the 

species is presented as a population of solutions.  Darwin's concept of survival of the fittest is 

then applied to the solutions in the population.  The objective value of a solution is a measure 

of its fitness.  The better the fitness of the solution, the higher the probability that the solution 

can be chosen as a parent to produce new solutions (offspring) for the next population 

(generation).  Genetic operators (usually crossover and mutation) have to be applied to the 

chosen parents to produce offspring.  As this process continues for generations, the fitness of 

the members (objective values of solutions) improves. 

Based on this explanation, the procedure of a basic genetic algorithm can be described 

as follows.17  Let S(t) denote the population in the t-th generation, si(t) the i-th member in S(t), 

f(si(t)) the fitness of si(t), Totfit the sum of f(si(t)) in S(t), popsize the population size, and 

maxgem the maximum number of generations for convergence.  Then a GA usually has the 

following steps. 

Step 1: Generate an initial population, S(t), where t = 0. 

Step 2: Calculate the fitness value for each member, f(si(t)), in population S(t). 

Step 3: Calculate the selection probability for each member, which is defined as f(si(t))/Totfit. 

Step 4: Select a pair of members (parents) randomly according to the selection probability.  

Step 5: Apply genetic operators to the parents to produce the offspring for the next population, 

S(t+1).  If the size of the new population is equal to popsize, then go to Step 6; 
                                                 
17 The following descriptions are mainly drawn from Chen et al. 1995 and Chen et al. 1996. 
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otherwise, go to Step 4. 

Step 6: If the current generation, t+1, is equal to maxgen, then stop; else go to Step 2. 

According to the above basic procedure, the application of a GA must consider the 

following factors: (1) representation of a solution, (2) initial population, (3) selection 

probability, (4) genetic operators, (5) termination criterion, and (6) three parameters: 

population size, crossover rate, and mutation rate.  In the following, each of these factors and 

parameters will be discussed in detail for a GA to generate the optimal asset allocations 

through our DFA system. 

1. Representation of a solution 

A solution for GA application is usually represented by a row vector.  The value of an 

element in the vector refers to the allocation to an asset in a period.  The number of elements 

in the vector depends upon the number of investable assets considered in a period and the 

number of periods considered in a problem.  Since four assets are considered in four periods 

with the constraint that the sum of the allocations is equal to one, twelve elements are included 

in the vector in the current application.   

2. Initial population 

The initial population of our GA is randomly generated as most applications of GAs are.  

Since the value of an element in the vector is in the range of [0, 1], we first generate three 

random numbers from the uniform [0, 1] distribution.  If the sum of the three generated 

elements is greater than one, then the elements will be multiplied by 0.9 consecutively until 

their sum is less than or equal to one.  We call this procedure a feasibility-keeping procedure.  

The purpose of the procedure is to ensure that the fourth element will not be negative and 

violate the short-sale constraint.  Note that the feasibility-keeping procedure has to be 

implemented to all four periods in each vector.   

3. Selection probability 

The selection probability of a member in a population should generally project the 
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performance measure of the member.  Usually, a member with a better fitness in a population 

would have a higher probability of being selected.  Since the candidate problem is to find an 

asset allocation that maximizes a specified utility function, the value of the utility function is 

used as the fitness value of the corresponding asset allocation.  The larger the value of the 

utility function, the higher the probability the corresponding set of allocations will be selected.  

The following procedure is an application of the well-known roulette-wheel selection scheme 

for calculating the selection probability of a member in a population. 

Step 1: Calculate the fitness f(i) for each member in the population. 

Step 2: Calculate the total fitness, Totfit, of all the members in the population. 

Step 3: Calculate the selection probability for each member that is equal to f(i)/Totfit. 

A complementary selection strategy (elitist strategy) is also considered in the current 

application.  More specifically, the member with the best fitness value in each population will 

always survive and automatically become a member in the next generation.  The purpose is to 

preserve the best solution so that the search always covers certain good solution regions. 

4. Genetic operators 

Genetic operators are performed on the parents to generate offspring.  Crossover and 

mutation are two common genetic operators of GAs. 

4.1 Crossover 

An effective crossover operator, BLX-0.5 (Eshelman & Schaffer, 1993), is used in this 

research.  Two selected parents, vectors A and B, are given and denote the values of an 

element in A and B as x and y respectively.  The BLX-0.5 is implemented to x and y in the 

following procedure to produce a value z for the element in the offspring generated by A and B. 

Step 1: Let ∆ = 0.5 ∗ |y-x|. 

Step 2: Randomly generate z from the range of (x-∆, y+∆) if x ≤ y; let x-∆ = 0 if x-∆ < 0, and let 

y+∆ = 1, if y+∆ > 1.  Otherwise, randomly generate z from the range of (y-∆, x+∆); let 
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y-∆ = 0 if y-∆ < 0, and let x+∆ = 1 if x+∆ > 1. 

For example, let (x1, x2) = (0.5, 0.2) be the values of the first two elements in A and let 

(y1, y2) = (0.1, 0.8) be the values of the first two elements in B.  The values of the first two 

elements, (z1, z2) of the offspring of A and B can then be generated as follows.  Let ∆1 = 0.5 ∗ | 

y1 – x1| = 0.5 ∗ |0.1 – 0.5| = 0.2 and ∆2 = 0.5 ∗ | y2 – x2| = 0.5 ∗ |0.8 – 0.2| = 0.3.  Then 

randomly generate z1 from the range of (y1-∆1, x1+∆1) = (0.1-0.2, 0.5+0.2) = (0, 0.7) and 

randomly generate z2 from the range of (x2-∆2, y2+∆2) = (0.2-0.3, 0.8+0.3) = (0, 1.0). 

4.2 Mutation 

When a solution is produced by crossover, a mutation operator is applied to the solution.  

Michaleicz (1996) developed a non-uniform mutation operator and showed that the operator 

outperformed other mutation operators after performing thorough experiments.  A 

non-uniform mutation operator is applied in this GA application by following the procedure. 

Step 1: Randomly select k elements out of the 12 elements in the solution, where k = 1 + 

Int[rnd*12] and Int is an integer function. 

Step 2: Apply the non-uniform mutation operator to each of the k elements.  It is given that 

element i is one of the k elements and  is the value of element i in the current 

generation t.  The value of element i in generation t+1, , is generated as follows: 

 =  + ∆(t, 1.0 - ) if rnd < 0.5; otherwise  =  - ∆(t, ), where ∆(t, v) 

= v * (1.0 – rnd

t
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b), b = (1.0 – t/T)5, and T is equal to maxgen (the maximum number of 

generations for convergence). 

Note that b = (1.0 – t/T)5 is approaching 0 when t is close to T; when b is approaching 0, 

(t, v) also approaches 0.  Michaleicz (1996) pointed out that this property causes the 

non-uniform mutation operator to search uniformly the solution space initially (when t is small) 

and locally at later stages.  Note also that after applying the mutation operator to the solution, 
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the feasibility-keeping procedure has to be implemented in the solution to maintain its 

feasibility. 

4.3 Population size, crossover rate, and mutation rate 

Population size (popsize) is the number of members generated in each generation.  

Crossover rate is the probability that a crossover operator applies to the chosen parents, and the 

mutation rate is the probability that a mutation operator applies to the offspring.  The 

population size of 60, as used in all the examples in Michaleicz (1996), is also used in the 

current application.  Both crossover rate and mutation rate are set to be one after several trial 

runs for the candidate problem.  

5. Termination Criteria 

The maximum number of generations (maxgen) is the most widely used termination 

criterion for GAs.  It is usually determined by trial-and-error.  We found that our GA 

converged within 2000 iterations in all the trial runs in the current application.  Therefore, 

maxgen is set to be 2000.   

We are now in a position to present the procedure of applying our GA to the DFA.   

Step 0: Let popsize = 60, maxgen = 2000, and t = 0. 

Step 1: Generate initial population with twelve-element solutions (vectors) Vi (i = 1, 2, …, 

popsize).  For each solution, call rnd to generate an asset allocation to each of its 

elements and apply the feasibility-keeping procedure to satisfy the constraint. 

Step 2: Calculate the fitness, f(Vi), for each solution by conducting the DFA simulation with the 

asset allocations given in Vi. 

Step 3: Select two parent solutions based on their fitness.  The selection probability of a 

parent solution Vi is p(i) = f(Vi)/Totfit. 

Step 4: Apply crossover operator, BLX-0.5, to the selected parent solutions.  

Step 5: Apply the non-uniform mutation operator to the solution generated in Step 4, and apply 

the feasibility-keeping procedure to maintain the feasibility of the solution.  
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Step 6: If the total number of offspring solutions generated is equal to popsize, go to Step 7; 

otherwise, go to Step 3. 

Step 7: Let t = t + 1.  If t is equal to maxgen, stop; otherwise go back to Step 2. 

The optimization program is coded in C language and is executed using a Linux 

platform (the OS is the RedHat AS 3.0).  The CPU is Intel Itanium 21.5GHz.  One of the 

features of this optimization program is that the dynamics memory allocation is used for all the 

necessary variables.  Therefore, the required memory used is around 70MB when running the 

program.  The program is compiled using the Intel C/C++ compiler in the Linux System, yet 

it can also be compiled and executed using the Microsoft Window XP platform with Visual 

Studio C/C++ compiler.  For 2000 iterations, this program took around 18,200 seconds to 

finish on average. 

IV. RESULTS 

A. General description of the DFA’s simulation results 

The simulated results of the financial markets are shown in Figures 2 to 4.18  We plot 

the simulated 1st percentile, 25th percentile, mean, 75th percentile, and 99th percentile values of 

each year in these figures.  The mean of the simulated short rates remains at the long-term 

average value of 6%, with fifty percent of the simulated short rates falling within the range of 

5.5% to 6.5%.  The 1st percentile simulated short rates are about 4.5% while the 99th 

percentile values are around 7.7%.  The means of the equity index and real estate index 

display upward trends and the ranges of the simulated values widen as the simulation goes on, 

which is consistent with the specified stochastic processes.19  

[Insert Figures 2 – 4 Here] 

B. Results of a basic search method 
                                                 
18 The simulation results of the insurance markets are not reported because the simulation is straightforward.  The 
loss ratio of each year is drawn from a normal distribution.   
19 We have also inspected the figures of the equity returns and real estate returns (not shown in the paper).  The 
25th percentile, mean, 75th percentile values of equity returns remain at -0.1%, 12%, 24% respectively across time.  
The minima and maxima of equity returns exhibit some bumps around -60% and 80%, respectively.  Real estate 
returns display similar features with higher means and wider variation ranges.   
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Before using the simulation optimization technique, we tried out a basic search method 

in a single-period framework as follows.  We list all possible asset allocations using the grid 

size of 20%.  Inserting these allocations into the DFA system and assuming that these 

allocations are kept to the end of the simulation, we obtain the values of the objective function.  

These values along with their associated average discounted surpluses as well as ruin 

probabilities are shown in Table 1. 

[Insert Table 1 Here] 

 Table 1 shows that the best asset allocation is [ ]′= 0.2    4.04.00)(* tθ .  It results 

in an objective function value of 1,137,275,044 with an average discounted surplus of 

$881,275,044 and a ruin probability of 1.36%.  Although the zero-cash allocation looks odd, 

it is reasonable because we did not consider liquidity in the model setting.  Furthermore, new 

premiums can cover the loss payments in most cases.  The runner-up is 

[ ′= 0.2    2.04.02.0)(tθ ]  with an objective function value of 1,132,889,250, an average 

discounted surplus of $876,889,250, and a ruin probability of 1.36%.  The runner-up 

allocation generates a little bit less expected surplus, which is reasonable because the return on 

cash on average is smaller.20   Number three is [ ]′= 0.2    04.04.0)(tθ  which results in 

an objective function value of 1,097,049,222, an average discounted surplus of $873,049,222, 

and a ruin probability of 1.44%.  The higher insolvency probability is probably because cash 

does not generate adequate returns.  Number four is [ ]′= 0.2    .602.00)(tθ .  This asset 

allocation produces an objective function value of 1,022,434,859, an average discounted 

surplus of $710,434,859, and a ruin probability of 1.22%.  Although it generates the smallest 

ruin probability among all the asset allocations, it produces an inferior average discounted 

                                                 
20 Remember that the return from cash is the one-year short rate.  Since the simulated yield curve is usually 
upward-sloping, the one-year bond is smaller than longer-maturity bonds.  The insolvency probability of the 
runner-up is the same as the number-one choice implies that the risk of the bond portfolio is small. 
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surplus compared to the top three allocations.  The fifth winner is [ ]′= 0.4    2.04.00)(tθ  

which results in an objective function value of 1,017,769,551, an average discounted surplus of 

$1,225,769,551, and a ruin probability of 2.52%.  Allocating more assets to higher-risk 

equities produces a significantly higher average surplus, but results in a higher ruin probability.   

The ranking of the top five asset allocation looks reasonable.  However, we do not 

spot any pattern revealing between which two asset allocations the optimal allocation might be.  

Weighting three variables to balance a higher average surplus with lower ruin probability is 

rather difficult.  Reducing the grid size of 20% is therefore the way to go if we do not have 

any algorithm to search for the optimum.  However, this reduction will increase the possible 

asset allocation dramatically.  When the grid size is 20%, the total number of asset allocations 

is 56.  When the grid size is 10%, the number increases to 286.  Five percent of grid size will 

produce 1,771 combinations while one percent will result in 176,851 allocations.  Therefore, 

the basic search method is not feasible in finding the optimal asset allocation even though it is 

intuitive and instructive.            

C. Results of the genetic algorithm 

Our GA produces a significantly better result than the basic search method.  The value 

of the objective function is 1,343,396,299 implying an 18% improvement over the above basic 

search method.  The GA results in a significantly higher average discounted surplus 

($1,055,396,299 that is 20% higher than that of the winner in section B) and a lower ruin 

probability (1.28%).  The optimal asset allocation is as follows: 

  

t 0 6 12 18 

Cash 16.1906% 2.7821% 14.4054% 3.3340% 

Stock 32.4451% 45.2235% 47.1426% 40.3112% 

Bond 29.6427% 12.7891% 5.7029% 7.0734% 
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Real Estate 21.7216% 39.2053% 32.7491% 49.2814% 

.  We plotted the resulting 1st percentile, 25th percentile, mean, 75th percentile, and 99th 

percentile surplus over time from the optimal asset allocation in Figure 5. 

[Insert Figure 5 Here] 

To secure the robustness of our application of GA to DFA, we tried two other sets of 

random numbers and two other sets of parameters of the underlying risk models.21  Using 

different sets of random number results in small changes in the objective function value.22  

The resulting values are 1,338,413,716 and 1,358,066,783.  Since these values represent a 

-0.37% and 1.09% difference respectively from the benchmark case described in the previous 

one paragraph, our application is robust across random numbers.   

The other two sets of parameters generate significantly different results.  Alternative 

parameter set 1 resulted in an objective function value of 1,445,571,649, an average discounted 

surplus of $829,571,650, and a ruin probability of 0.46%.  The optimal asset allocation is as 

follows: 

  

t 0 6 12 18 

Cash 34.4349% 18.2585% 0.1492% 2.5802% 

Stock 19.6516% 15.9641% 36.8198% 49.8485% 

Bond 17.8915% 30.4849% 2.1546% 10.3742% 

Real Estate 28.0221% 35.2925% 60.8764% 37.1971% 

.  The features of this parameter set include fairly profitable but highly volatile financial as 

well as insurance markets with a moderately positive correlation between the long-tail 

insurance and financial markets.  The position correlation possibly contributes to the lower 

                                                 
21 The alternative parameter sets are described in the appendix. 
22 The two alternative parameter sets are specified rather arbitrarily.  We intentionally make them “unreasonable” 
to see whether our GA can still find solutions under odd settings.  The random number set used for these two 
alternative parameter sets is the same as the one used in the benchmark case. 
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ruin probability compared to that in the benchmark case and thus generates a higher objective 

function value.  The lower average discounted surplus might be as a result from the relatively 

conservative investments during the first twelve years.   

Alternative parameter set 2 results in an objective function value of 998,583,316, an 

average discounted surplus of $198,583,316, and zero ruin probability.  The optimal asset 

allocation is as follows: 

  

t 0 6 12 18 

Cash 0.0010% 0.0010% 0.0010% 0.0183% 

Stock 14.3156% 17.6433% 25.7770% 21.0308% 

Bond 0.0010% 0.0013% 0.0053% 0.1233% 

Real Estate 85.6824% 82.3544% 74.2167% 78.8276% 

.  The features of alternative parameter set 2 include highly positive correlations between the 

long-tail insurance and the financial markets, relatively safe insurance markets, a fairly 

profitable but highly volatile stock market, and a low-return but high-risk bond market.  The 

allocations to bonds and cash are thus minimal.  Most of the funds are allocated to real estate 

with some funds to stocks for higher returns.  The average discounted surplus under 

parameter set 2 is the smallest among the three parameter sets because the discount rate for 

surplus is the highest (45% vs. 3% and 15%).  The lower returns in the financial markets 

might also contribute to the smallest average discounted surplus.  The zero insolvency 

probability is probably due to the low risk in the insurance markets and the high correlation 

between the financial and long-tail insurance markets.  Finally, the significantly lower average 

discounted surplus under parameter set 2 compared to the other two parameter sets results in 

the smallest objective among the three parameter sets. 

V. SUMMARIES AND CONCLUSIONS 
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Managing an insurance company is more difficult than managing other types of 

companies because an insurer faces not only asset risks but also liability risks.  The DFA 

system is a promising tool for the insurer.  It takes full account of the static and dynamic 

relations among asset variables and liability variables.  The major output of a DFA system is 

the distribution of an insurer’s future surplus that can be further used to compare alternative 

asset allocations, business strategies, and reinsurance arrangements, among others.  Insurance 

regulators can use a DFA system to perform an early warning analysis as well as set up 

minimal capital requirements. 

The main drawback of the DFA system is the lack of an optimization mechanism.  

Users can perform only comparative analysis with no way of knowing what the optimal 

strategy is.  Simulation optimization is receiving considerable interest in the field of 

operations research and may be a nice complement to the DFA system.  By incorporating 

optimization features in a DFA system, the DFA system turns from a descriptive model into an 

operational tool to solve various decision-making problems.  The contribution of this paper is 

coupling a DFA system with a simulation optimization technique and applying the combination 

to the asset allocation problem of a property-casualty insurance company. 

 We first built up a simply DFA system in which an insurer underwrites both short- and 

long-tail businesses and invest in four types of assets.  Then we formulated the asset 

allocation problem as a multi-period one instead of a single-period one.  A multi-period asset 

allocation is superior because the accumulation of a sequence of single-period optimal 

decisions across periods may not be optimal for these periods taken as a whole.  We also 

considered the short-sale constraints faced by insurers when making investments.  The 

capability of solving a constrained multi-period problem illustrates the advantage of simulation 

optimization, although we must keep in mind that the found solution as a result of simulation 

optimization cannot be proved to be the optimum.  The simulation optimization technique 

used in this paper is a generic algorithm. 
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  We successfully incorporated a generic algorithm into a DFA system and performed a 

search for the optimal asset allocation of a property-casualty insurer in this paper.  The 

resulting asset allocation was a significantly higher value of the objective function compared to 

the allocation found from a basic search method.  The optimal allocation produced a higher 

average discounted surplus and a lower ruin probability.  Using different sets of random 

number generated similar values of objective function and demonstrated the robustness of our 

coupling across random numbers.  The optimal asset allocation is sensitive to the parameters 

of financial and insurance market models, with the changes being consistent with the 

differences in the parameters.  Therefore, insurance companies that are using or are interested 

in DFA should learn one of the simulation optimization techniques to equip their DFA systems 

with optimization features.    
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Table 1: The results of the basic research method 

              

Cash Stock Bond 
Real 

Estate 

Value of the 

Objective Function

Average 

Discounted Surplus 

Ruin 

Probability

1 0 0 0 -72,581,897  351,418,103  0.0306  

0.8 0.2 0 0 551,978,871  463,978,871  0.0178  

0.8 0 0.2 0 -46,112,487  353,887,513  0.0300  

0.8 0 0 0.2 552,303,659  552,303,659  0.0200  

0.6 0.4 0 0 637,421,327  605,421,327  0.0192  

0.6 0.2 0.2 0 570,938,385  466,938,385  0.0174  

0.6 0.2 0 0.2 971,157,610  699,157,610  0.0132  

0.6 0 0.4 0 12,156,152  356,156,152  0.0286  

0.6 0 0.2 0.2 587,409,029  555,409,029  0.0192  

0.6 0 0 0.4 336,229,618  840,229,618  0.0326  

0.4 0.6 0 0 280,468,735  776,468,735  0.0324  

0.4 0.4 0.2 0 664,738,139  608,738,139  0.0186  

0.4 0.4 0 0.2 1,097,049,222  873,049,222  0.0144  

0.4 0.2 0.4 0 589,926,635  469,926,635  0.0170  

0.4 0.2 0.2 0.2 975,076,921  703,076,921  0.0132  

0.4 0.2 0 0.4 865,202,808  1,017,202,808  0.0238  

0.4 0 0.6 0 70,408,056  358,408,056  0.0272  

0.4 0 0.4 0.2 614,605,036  558,605,036  0.0186  

0.4 0 0.2 0.4 379,816,127  843,816,127  0.0316  

0.4 0 0 0.6 -1,437,343,176  1,234,656,824  0.0868  

0.2 0.8 0 0 -979,818,603  988,181,397  0.0692  
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0.2 0.6 0.2 0 331,768,042  779,768,042  0.0312  

0.2 0.6 0 0.2 920,627,902  1,072,627,902  0.0238  

0.2 0.4 0.4 0 707,867,321  611,867,321  0.0176  

0.2 0.4 0.2 0.2 1,132,889,250  876,889,250  0.0136  

0.2 0.4 0 0.4 996,985,281  1,220,985,281  0.0256  

0.2 0.2 0.6 0 585,128,292  473,128,292  0.0172  

0.2 0.2 0.4 0.2 1,002,693,284  706,693,284  0.0126  

0.2 0.2 0.2 0.4 916,984,155  1,020,984,155  0.0226  

0.2 0.2 0 0.6 -262,968,275  1,425,031,725  0.0622  

0.2 0 0.8 0 120,775,989  360,775,989  0.0260  

0.2 0 0.6 0.2 641,808,556  561,808,556  0.0180  

0.2 0 0.4 0.4 423,394,768  847,394,768  0.0306  

0.2 0 0.2 0.6 -1,377,259,696  1,238,740,304  0.0854  

0.2 0 0 0.8 -4,699,438,942  1,764,561,058  0.1816  

0 1 0 0 -3,230,097,737  1,249,902,263  0.1320  

0 0.8 0.2 0 -881,219,802  990,780,198  0.0668  

0 0.8 0 0.2 192,104,867  1,304,104,867  0.0478  

0 0.6 0.4 0 351,750,776  783,750,776  0.0308  

0 0.6 0.2 0.2 948,987,876  1,076,987,876  0.0232  

0 0.6 0 0.4 608,774,850  1,456,774,850  0.0412  

0 0.4 0.6 0 727,242,728  615,242,728  0.0172  

0 0.4 0.4 0.2 1,137,275,044  881,275,044  0.0136  

0 0.4 0.2 0.4 1,017,769,551  1,225,769,551  0.0252  

0 0.4 0 0.6 -153,875,069  1,662,124,931  0.0654  

0 0.2 0.8 0 604,121,085  476,121,085  0.0168  
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0 0.2 0.6 0.2 1,022,434,859  710,434,859  0.0122  

0 0.2 0.4 0.4 953,078,642  1,025,078,642  0.0218  

0 0.2 0.2 0.6 -187,400,811  1,428,599,189  0.0604  

0 0.2 0 0.8 -3,183,750,687  1,968,249,313  0.1488  

0 0 1 0 131,373,027  363,373,027  0.0258  

0 0 0.8 0.2 661,117,051  565,117,051  0.0176  

0 0 0.6 0.4 451,314,002  851,314,002  0.0300  

0 0 0.4 0.6 -1,309,777,975  1,242,222,025  0.0838  

0 0 0.2 0.8 -4,639,208,243  1,768,791,757  0.1802  

0 0 0 1 -8,421,281,758  2,482,718,242  0.2926  
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Figure 2: The simulated short rate statistics along with time 
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Figure 3: The simulated equity index statistics along with time 

 

Figure 4: The simulated real estate index statistics along with time 
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Figure 5: The simulated surplus statistics under the optimal asset allocation 
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Appendix: Alternative Parameters 

A. Alternative Parameter Set 1 

Model Parameters 

Short Rate m  = 20% q  = 0.1 v  = 10% 

Equity Index Sπ  = 10% Sσ  = 35%  

Real Estate Index µ  = 30% REσ  = 60%  

Loss Ratio (Long) mean = 30% )(LLRσ  = 100%  

Loss Ratio (Short) mean = 20% )(LLRσ  = 80%   

The starting value of the short-term interest rate is 1%.  The correlation matrix ℜ is: 

 dWS dWr dWLR(L) dWRE

dWS 1 0.60 0.60 0.60 

dWr 0.60 1 0.60 0.60 

dWLR(L) 0.60 0.60 1 0.59 

dWRE 0.60 0.60 0.59 1 

.  The parameters of the representative insurer are set as follows: IS(0) = 100, IP(0) = 110, B(0) 

=
11
10 , Exp(L) = 50%, Exp(S) = 50%, G(L) = 2%, G(S) = 1%, and 

dy 1 2 3 4 5 6 7 8 9 10 

DL(dy) (%) 10 10 10 10 10 10 10 10 10 10 

DS(dy) (%) 30 40 30        

.  The discount rate for future surplus is assumed to be 15% while the discount rate for the 

reserves is set at 1%.  The new investments to bonds are allocated one-third to one-year bonds, 

one-third to seven-year bonds, and one-third to fifteen-year bonds. 

B. Alternative Parameter Set 2 
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Model Parameters 

Short Rate m  = 2% q  = 0.7 v  = 6% 

Equity Index Sπ  = 20% Sσ  = 50%  

Real Estate Index µ  = 10% REσ  = 13%  

Loss Ratio (Long) mean = 90% )(LLRσ  = 20%  

Loss Ratio (Short) mean = 95% )(LLRσ  = 10%   

The starting value of the short-term interest rate is 12%.  The correlation matrix ℜ is: 

 dWS dWr dWLR(L) dWRE

dWS 1 0.99 0.99 0.99 

dWr 0.99 1 0.99 0.99 

dWLR(L) 0.99 0.99 1 0.99 

dWRE 0.99 0.99 0.99 1 

.  The parameters of the representative insurer are set as follows: IS(0) = 250, IP(0) = 1,100, 

B(0) = 
11
1 , Exp(L) = 10%, Exp(S) = 5%, G(L) = 12%, G(S) = 20%, and 

dy 1 2 3 4 5 6 7 8 9 10 

DL(dy) (%) 0.1 0.1 0.3 0.5 1 3 5 10 30 50 

DS(dy) (%) 5 15 80        

.  The discount rate for future surplus is assumed to be 45% while the discount rate for the 

reserves is set at 10%.  The new investments to bonds are all allocated seven-year bonds.   
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I. INTRODUCTION 

Asset allocation is essential to the solvency of a property-casualty insurance company.  

A proper asset allocation generates adequate returns with non-excessive risk while provides 

liquidity for claim payments.  A poor allocation, on the other hand, may result in inadequate 

returns, excessive risks, and/or illiquidity.  A poor allocation is bad not only to shareholders 

but also to customers since the inefficiency in investing premiums will ultimately result in an 

undue insolvency probability of the serving insurer and/or high premium rates if the market is 

imperfect.  Therefore, asset allocation should be regarded as an integrated part of a 

property-casualty insurer’s core businesses.   

The literature offers a property-casualty insurer two major ways to tackle the asset 

allocation problem.  The first way follows the renowned mean-variance analysis of 

Markowitz (1952).  In its simplest form that ignores the underwritten businesses, this method 

comes out of an efficient frontier representing the best portfolios in terms of the return-risk 

tradeoff.  Many software packages, even the Microsoft Excel, can generate the efficient 

frontier instantly whenever the mean vector and covariance matrix of the asset returns are 

given.  A more comprehensive method is taking the liability side into consideration explicitly 

in the mean-variance analysis (e.g., Sharpe, 1990; Craft, 2005; Chiu and Li, 2006).  This 

consideration is essential to the asset-liability management of life insurers, property-casualty 

insurers, and pension funds.  The mean-variance analysis, however, is subject to two 

fundamental flaws: the single-period framework and the inappropriate utility function assumed 

for the investor (Brennan, Schwartz, and Lagnado, 1997).  The solution to a static portfolio 

choice problem can be very different from the solution to a multi-period problem except under 

restrictive conditions on utility functions and/or asset returns (Campbell, 2000).  

The second way to construct optimal portfolios originated from Merton (1971; 1990).  

The literature along this line formulates the asset allocation problem as a stochastic optimal 

control problem and the solutions are characterized by the Hamilton-Jacobi-Bellman (HJB) 
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partial differential equations.  Solving the highly non-linear partial differential equations is, 

however, rather difficult.  Algebraic solutions can be obtained in very special cases only.  

Furthermore, the number of state variables must be small since the size of the stochastic 

optimal control problem grows exponentially with the number.  Cox and Huang (1989) made 

conceptual progress by showing that one can apply the martingale representation theory to 

reduce the stochastic dynamic programming problem to a static problem in complete markets.  

Few closed-form solutions have been available outside the simplest cases, however.  

Furthermore, complex hedging terms are difficult to evaluate numerically.  The empirical 

applicability of the intertemporal portfolio choice method is therefore severely limited.   

We in this paper take advantage of the recent progresses in the techniques of simulation 

optimization to tackle the asset allocation problem faced by a property-casualty insurer in a 

heuristic way. We formulate the asset allocation problem as a simulation optimization problem 

(Tekin and Sabuncuoglu, 2004) in which the insurer’s future surplus and risk are generated by 

a simulation model and a global optimization technique, multi-phase evolutionary strategies 

(MPES), is used to search the optimal asset allocation. The model simulates the dynamics of a 

property-casualty insurer that underwrites both short-tail and long-tail line of businesses and 

invests in five types of risky assets. The simulation generates 10,000 paths of 25-year changes 

in which the insurer re-allocate its assets every five years with no-short-sale constraints, which 

makes our problem a multi-period one. The objective function of the insurer involves not only 

average discounted future surplus but also insolvency probabilities and thus is non-linear.  

To examine the potential gain of using simulation optimization, we compare our results 

with those generated by the commonly used ad hoc multi-period strategies, the so-called 

re-balancing methods. The re-balancing can be done periodically (called periodical 

re-balancing in the following) or triggered by the deviations of the asset proportions from the 

first-period allocations that exceed a pre-specified interval (called interval re-balancing in the 

following). The first-period asset allocation is usually obtained by trying all possible 
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combinations of allocations in which the allocations are restricted to be multiples of certain 

proportions like 10% or 20% (we call this method as grid search in the following). We also 

employ MPES to produce the first-period asset allocation for the re-balancing methods to see 

how much improvement MPES can be over the grid search method. We set up two comparison 

criteria: the value of the objective function and the position of the generated “efficient 

frontier.” The comparison based on the objective function’s value is intuitive, but any specific 

objective function represents only one combination of expected return and risk. We thus extend 

our comparisons to a series of return-risk pairs to see the relative positions of the resulted 

efficient frontier. 

Our results show that the periodical re-allocation using MPES produces significant 

improvements over other strategies. The MPES re-allocation strategy results in the highest 

value of the objective function. It outperforms the interval re-balancing using grid search to 

determine the first-period asset allocation by 16.49%. The improvements of MPES 

re-allocation over grid-search periodical re-balancing, MPES periodical re-balancing, and 

MPES interval re-balancing are 16.16%, 10.04%, and 8.97%. With regard to the relative 

positions of the efficient frontier, the MPES re-allocation strategy remains to be the best, 

followed by the MPES interval re-balancing, MPES periodical re-balancing, grid-search 

interval rebalancing, and grid-search periodical rebalancing strategies. In short, the reallocation 

using MPES is the best and all the strategies using MPES perform better than the strategies 

using the grid search method.  

The rest of this paper is organized as follows. Section 2 describes our simulation model, 

including the setting of the financial markets and insurance markets. Section 3 depicts the 

dynamics of the representative insurer’s financial positions. The investment strategies used for 

comparisons are described in Section 4, and the optimization problem of the insurer is 

formulated in Section 5. In Section 6 we explain the proposed searching technique MPES in 

detail.  Comparisons are displayed in Section 7. Five investment strategies are evaluated by 
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the values of the objective function and the efficient frontiers that they can generate. Section 8 

contains summaries and conclusions.  

II. STOCHASTIC INVESTMENT AND INSURANCE MARKETS 

In this section, we set up the stochastic models of the investment and insurance markets 

used to simulate asset prices and underwriting losses. 

A. Investment Markets 

The insurer could invest five different types of assets. These assets include stocks, 

bonds, three types of alternative investments that are individual with “high-return and 

high-risk”, “low- return and high-risk” and “low-return and low-risk”. The bonds could be 

separated as one-year maturity, two-year maturity… and fifteen-year maturity, with total fifteen 

kinds of short and long maturity bonds.  

The entire simulation horizon is , and all the models would be built as the dynamics 

form at a certain period t ( ). All the volatilities of the asset models yield Wiener 

processes, so we use 

nT

nTt ≤

Wd  to present the differential of those processes. The correlations 

among asset price changes and losses claims of insurance are denoted as R. 

]'[ sllhllhh lrlrAIAIAIStr dWdWdWdWdWdWdWWd = , where 

r : short rate  

St: Stock 

hhAI : high-return and high-risk alternative investment 

llAI : low-return and low-risk alternative investment  

lhAI : low-return and high-risk alternative investment 

llr : loss ratio of long-tail business 

slr : loss ratio of short long-tail business 

 

1. Bond Markets 
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The variation of the short rate usually affects both bond market and stock market. To 

simulate the variation of the short rate, we set up the CIR (Cox, Ingersoll, and Ross, 1985) 

model as short rate model. That is Wdrdtrabdr trtt σ+−= )( , where  is long-term 

average of the short rate and  denotes the mean reversion rate. The volatility of the 

evolving process is 

a

10 << b

]000000[vr =σ . 

 In the bond market, we also adopted CIR model and the price of the bond is mapping 

from the short rate. The price of a default-free zero-coupon bond at time t for the delivery of $1 

at time T as: 
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2. Stock Markets 

We assumed that the dynamics of stock index follows the interest-rate-adjusted geometric 

Brownian motion as below. The  denotes the change in the stock market index within a 

time period t. The  denotes the risk premium and the volatility of the index return 

tdSt

St

]000000[ StSt σσ = . 

Wddtr
St

dSt
StStt

t

t σ++= )(  

3. Alternative Investment Markets: High-return and High-risk 

The adjustment of hhAI index moves according to geometric Brownian motion. The 

primary feature of this model is high risk and high return, hence its σ  and µ  is relative high 

to other alternative investment models.  The index of this asset model is listed as follows: 
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Wddt
tAI

dAI
hhhh AIAIhh

hh

σµ +=
)(

 

, where hhAI
µ  is the expected return of hhAI  and the volatility is indicated as 

]000000[ hhhh AIAI σσ = . 

4. Alternative Investment Markets: Low-return and Low-risk 

Changes of this asset price also follow geometric Brownian motion. The parameters σ  

and µ  are set purposely to be relatively low to other alternative investment models. The 

associated process is as follows: 

Wddt
tAI
tdAI

llll AIAIll

ll

σµ +=
)(
)( ,  

where llAI
µ  is the expected return of high-return and high-risk alternative investment and the 

volatility is indicated as ]000000[ llll AIAI σσ = . 

5. Alternative Investment Markets: Low-return and High-risk 

The motivation of lhAI  index still complies with geometric Brownian motion. This kind 

of investment usually brings high risk and low return and hence σ  is relative high but µ  is 

relative low to the entire alternative investment models. One characteristic of the model is with 

negative correlation among the assets. It is a hedging asset and could be used to regulate the 

high-risk assets. The model of this assets index is depicted as: 

Wddt
tAI
tdAI

lhlh AIAIlh

lh

σµ +=
)(
)(  

, where lhAI
µ  is the expected return of lhAI and the volatility is 

]000000[ lhlh AIAI σσ = . 

B. Insurance Markets 

The insurer has a long-tail business and a short-tail business here. We particularly 
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considered two issues about the timing and the amount of claim payments in the long-tail and 

short-tail businesses.  

The timing of claim payments is also called claims tail. In some insurance contracts, a 

considerable proportion of claim payments are paid slowly because of the negotiations between 

the insurer and their customers. The lag between the time that coverage is sold and the time 

that claims are paid is the called claims tail. “Long-tailed” business such as liability and 

workers’ compensation insurance in which most claims are paid in several years after the 

coverage period. “Short-tailed＂ business likes property insurance coverage and coverage for 

employee medical costs under group health insurance contracts in which large proportion of 

claim are paid during the year of coverage or the year after. (Harrington and Niehaus, 1999). 

We call the span of claim payments as the loss development periods in this study. 

Whether long-tail or short-tail business, total claim amount of every new coming 

business is different from each other because the uncertainty of loss ratio always associates 

with the insurance business. We need to construct the loss ratio models for the amount of the 

payment based on this uncertain feature. The following models are related to the timing and the 

amount of claim payments for the long-tail and short-tail lines of businesses. 

1. Long-Tail Businesses 

The loss ratio of long-tail business claim payments at each period is simulated using 

normal distributions with positive parameters ( ). The loss development will vary with 

different proportions  in different period. We assumed the development periods of the 

long-tail business as  and it has to satisfy  where .  

ll lrlr
σµ ,

l
id

lt ∑ ==

lt
i

l
id1 1 10 ≤≤ l

id

2. Short-Tail Businesses 

The variation of loss development across periods in this market is following normal 

distributions with parameters ( SS lrlr σµ , ).  In addition, the loss development of each period is 

alterable with different proportions .  We assumed the development periods of short-tail s
id
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business is  and it has to satisfy  where . st ∑ ==
St

i
s
id1 1 10 ≤≤ s

id

III. THE DYNAMICS OF THE INSURER’S OPERATIONS 

The insurance company has two principle operations about insurance business and 

assets investment proceeding over the time horizon  (from nT 0=t  to , see the 

time axis in Figure 1). These operations that affect the positions of the assets usually occur at 

the beginning and the end of period t. At the beginning of the period, three sub operations 

include receive the premiums, list reserves and increase investable funds and allocate 

investable funds (the rules of allocation strategies would be discussed in the next section). 

Once it comes to the end of the period, three sub operations include recalculate the asset values, 

claims realized and deduct claim payments from assets. Therefore, the positions of the asset 

would be changed again after paying for the losses. All above activities would be separated and 

described as insurance business and asset investments. In the figure we use italic text to denote 

the insurance activities of the insurance businesses and use bold text to denote the investment 

activities of the assets. We describe these two kinds of activities more detail in the following 

two sections. 

1−= nTt

 

at the end of period t at the beginning of period t  

 

 

Figure 1: The business and investment activities
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receives insurance premiums from their customers and then lists the amount of premiums as 

the reserve in the liability. At the same time, the cash from premium collective could become 

the investment funds to be put into the financial markets that would be listed as the assets of 

the company. All claims are usually paid at the end of the year. As the company paid out the 

claims, the reserve of liability will decrease. We will describe these activities more elaborately 

in the following subsections. 

1. Premiums Received 

We assumed that the business revenue of insurer grows with a constant rate. Under the 

constant growing condition, premium incomes of this period will increase  or 

 based on the income of last period. Therefore we can express the total insurance 

premium income of each period as: 

)1( lg+

)1( sg+

)1(*)1(*Pr)1(**PrPr 1111
s

tt
l

ttt gmgmm +−++= −−−− λλ , where 

tmPr : total premium income in period t 

tλ : a proportion of long-tail premium income to total insurance premium income   

lg ( ): a constant, long-tail (short-tail) business growing rate in each period and  

( 0 ). 

sg 10 << lg

1<< sg

2. Reserves and Investable Funds 

During each period, insurer deducts a given expenses from the business revenues and 

invests all of them into the financial markets afterwards. The net premium income, the reserve 

or the investment funds, could be depicted as follows. 

)1(*)1(*Pr)1(**PrRe 11
s

tt
l

tttt fmfmserveFund    −−+−== −− λλ , where 

lf ( ): a constant, a ratio of related expense for the long-tail business (short-tail business) sf

3. Claims Realized 
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Both of the insurance businesses receive the premium income at the beginning of each 

period, and pay the loss for customers at the end of a period. We should consider the old 

businesses were accepted in the prior period but their losses would be paid afterwards when we 

calculate the claim payment of this period. This would lead to that the claim the insurer has to 

pay includes the new coming business and prior business would be paid by the part of this 

period. Therefore, the total losses paid at the end of period t is 

∑ ××∑ +××=
+−=

+−
+−=

+−

t

tti

s
it

s
i

s
i

t

tti

l
it

l
i

l
it

sl
dlrmdlrmLoss

)1,1max(
1

)1,1max(
1 PrPr

, where  

)( s
i

l
i lrlr : loss ratio of long-tail (short-tail) business in period i. 

B. Investment Activities 

We simulate the changes in the asset positions during each period at three time points, 

including the beginning of this period, before and after claims realized at the end of this period. 

At the beginning of period t, the insurer allocates the investable funds. At the end of period t, 

the insurer mark-to-the markets for the asset before claims realized and it deducts the claim 

payments from the assets. The asset positions undulate continually at these three time points in 

all simulation periods. To understand the performance of the simulation periods, we calculate 

the profit or the loss at the end of every period t of the whole horizon . Whether profit or 

loss happens, the shareholders absorb them all. Nevertheless, while the company cannot afford 

the losses, the company would be insolvent and forced to stop simulating the path. In this 

section, we adopted the balance sheet to express the changes of all asset positions.  

nT

Notations 

t: a certain period  1,,0 −= nTt

ζ : a set of periods for making asset allocation strategies, where 10 −≤≤ nTζ  and 

Ζ∈ζ  
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a: the time after claim realized 

b: the time before claim realized 

ix : asset class i , where  corresponding to Bd,5,,1=i ,St hhAI , lhAI  and llAI  

k : k-th type of bond, the bond is one-year maturity bond when 1=k  and so on 

nk : number of the types of bonds 

kbp : allocation of the k-year maturity bond to the all bonds 

ixtq , : quantity of asset class  in period t ix

kxt i
q ,, : quantity of k-th type of asset  in period t ix

ixtp , : unit price of asset class  in period t ix

kxt i
p ,, : unit price of k-th type of asset  in period t ix

ixtv , : value of the asset class  in period t ix

Cptl : capital in the initial period as the company established  

ixt ,θ : allocation of asset class  in period t ix

'
, ixt

θ : new allocation of asset class  in period t ix

tserveRe : reserve for the claim in period t 

tA : total asset value in period t 

tL : total liability in period t 

tE : total equity in period t 

1. At the Beginning of Period t — Allocate Investable Funds 

The company receives the premium income at the beginning of every period. It regards 

the cash from the reserve as the new increased investment funds and allocates the funds into 

each asset according to the investment strategies (asset allocation strategies). Most of the assets 

will proportionally increase in this point.  
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On the asset side, there are two different situations about asset allocation. In the 

situation 1, the total fund has additional capital from the shareholders in the first year of the 

company. Otherwise we just keep ourselves staying in the situation 2. The situation 2 also has 

two cases about the time whether making the strategies or not.  

Situation 1: t = 0   

  The quantity of each asset we will buy as following.  

iii xxtx pFundCptlq ,0,0,0 /)( θ×+=           5,4,3,1=i  

 kxkxtkx PbpFundCptlq ,,0,0,,0 222
/)( ××+= θ  

Situation 2:  1,,2 −= nTt

  Situation 2.1: ζ=t  

iiii xtxtt
a

xtxt pFundqq ,,,1, /θ×+= −            5,4,3,1=i  

kxtkxtt
a

kxtkxt pbpFundqq
,2222 ,,,,1,, /××+= − θ    

Situation 2.2: otherwise, 

iixti xtt
a
txt pFundAq ,

'
1, /)(

,
θ×+= −            5,4,3,1=i  

kxtkt
a
tkxt pbpFundAq

xt ,22,2 ,
'

1,, /)( ××+= − θ  

iii xtxt,
i

xtt pq vA ,

5

1
, ×=∑=

=
 

On the liability side, the value increases due to the new insurance businesses.  

   ttt serveLL Re1 += −

Since the total asset value equals the sum of liability and surplus, we can get the surplus form 

the following formulation. 

  ttt LAS −=

2. At the End of Period t — Mark-to-the Markets for Assets 

At the end of the period, the company has to pay for the loss of the customers. However 
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the loss would be paid by each asset according to the proportion of each asset present value to 

the total assets present value. We have to complete mark to the markets for assets before the 

claims realized because of the price fluctuations in the financial markets. Regarding the bonds, 

the rest years of maturity of each type would be shorten at this time. For simplification, we use 

the one-year maturity bond, which would become $1 face value on the due day to purchase the 

new fifteen-year maturity bond. In the following formulations, the superscript b means the 

special time before claim realized. For example, denotes the total asset value before claim 

realized at the time t. 

b
tA

On the asset side, the prices of assets are changed at the end of period t. The asset value 

would be recalculated with price .   1+tp

1,,
2

1,,1,,,1

4

1
,

5

1
,

222
)( xt

k

k
kxtkxtxt

i
xt

i

b
xt

b
t

qpqpq    

vA

n

ii

i

+∑ ×+×∑=

∑=

=
−++

=

= . 

On the liability side, the value is still the same. 

 . t
b
t LL =

We then deduct the liability from the asset value to get the equity value. 

   b
t

b
t

b
t LAS −=

3. At the End of Period t — Deduct Claim Payments from Assets 

Insurance company pays the claims by selling the assets. When the insurer sells the 

assets, each asset class would be sold the amount of loss with proportion of this asset value to 

the total asset value. We could see the positions of assets are already changed after claim 

realized. In the following formulations, the superscript a means the special time after claim 

realized. For example, denotes the total asset value after claim realized at the time t. a
tA

On the asset side, the asset value would decrease because of paying for the claim loss. 
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iii xt
a

xt
a

xt pvq ,1,, / +=  

kxt
a

kxt
a

kxt pvq ,,1,,,, 222
/ +=  

On the liability side, the original preparation of reserve for the insurance loss payments 

at the beginning of period t would decrease because the claim realized.  

 . t
b
t

a
t LossLL −=

The equity value of shareholders is again obtained by deducting the liability from the asset: 

a
t

a
t

a
t LAS −= . 

IV. ASSET ALLOCATION STRATEGIES 

The company must make proper proportion adjustment for the assets at the certain time 

to gain the greatest expected wealth in such uncertain investment markets. The principles of 

asset allocation strategies contain the adjusting rules and the adjusting ways. In this study we 

divided the adjusting rules as periodical and interval. As to the adjusting ways, we distinguish 

them into reallocation and rebalance. The following are brief accountings: 

A. Adjusting Rules     

1. Periodical Adjustment 

The length of time for adjusting the asset allocation is fixed. For example, the simulated 

horizon is a total of twenty-five years and we readjust the proportions every 5 years. 

2. Interval Adjustment 

The adjusting timing is determined by if the proportion of any asset exceeds the 

predefined limitation. We assumed the limitation of increasing or decreasing degrees is allowed 

below br  ( ). Once the amount of asset value is changed beyond 10 ≤≤ br br  of its 

proportion 
ixt ,θ  suggested in the investment strategy, the company must undertake new 
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adjustments. It means that the changeable range of the asset proportion in each period is 

permitted by [ ].  b
xt

b
xt r r

ii
+− ,, ,θθ

B. Adjusting Methods 

1. Rebalancing 

When the company encounters the time for making new strategies, every asset adjusts 

the present proportion according the old proportion in the first strategy. The investment 

portfolios θ~  are always still the same, whatever how many times the insurer has made the 

strategies. 

2. Reallocation 

The company has to create new allocations when it encounters the time for making 

strategies. This new allocations would adjust the assets to the new positions. 

V. OPTIMIZATION AND EXPERIMENT DESIGN 

We used two ways to evaluate the performance of alternative investment strategies. One 

is efficient frontier and the other is utility function. The prior can show us how the surplus 

changes across risk levels and the posterior directly display a single value, which integrates 

both the surplus and the risk.  

A. Efficient Frontier 

The main purpose that we employed the efficient frontier is to understand the performance 

of different investment strategies with an overview. We use an efficient frontier curve to 

express the entire performance of a specific strategy, because efficient frontier curve is made 

up of points representing several portfolios with differing levels of risk and return. When the 

position of the cure is located at more upper left, it signifies that the performance of these 

portfolios on this curve is better.       

The expect return is the average discounted surplus as below. To calculate this item, we 

calculate the average of discounted surplus of all periods for each path and than average the 
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total results of all ϕ  simulated paths. For simplicity, we set and observe ten points under the 

specific and different risk levels as 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.07, 

and 0.1 during using the MPES

pr

23. We set the greatest observed risk is at 0.1 because we believe 

this level still stays in the general tolerant range.   
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B. Utility Function 

In contrast to the efficient frontier, the utility function just produce only one point (value). 

We usually use the utility function of the company as the objective function. The utility 

function has two parts that express the return and tolerable ruin probability at the same time. In 

this study, the first term is average discounted surplus (see below). The second term is a 

punished item to denote that the ruin probability  of the simulated result has outrun 

the tolerable ruin probability 

ruinprob

τ . This deduction (punishment) of the utility is implying the 

company’s dissatisfaction. The constant  is chosen by the company to properly reflect the 

importance of excessive ruin probability.  

k

                                                 
23 For the search technique ES, we can easily set the risk level as our constraint to search the return under this 
specific risk. However, the grid search method does not allow us to specify the risks. 
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The entire utility function can convey the practical situation. That is when the company 

pursues the high profit and naturally lifts up the risk and return, it will result in the higher ruin 

probability and force the value of the utility lower. However, when the company avoids the 

high ruin probability of the risky assets, it usually gets lower returns. We use MPES to find the 

appropriate investment portfolio  to make the utility reach the maximum. This means that 

the company can gain the greatest profit and lower the ruin probability at the same time.   

~
θ

C. Experiment Design 

The experiments simulated investment of the insurance company for twenty-five years 

and the number of simulated paths is 10,000, which are the various situations of the return and 

loss of the markets. We preceded two main parts of experiments to compare the differences 

between the all sorts of searching methods and adjustment rules (see Table 1). The first one 

uses the grid search method to solve the problems and the other uses MPES. The parameters of 

the two main experiments are identical and the detail settings are listed in the appendix.     

 

Table 1: Experiment design for the asset allocation strategies and search methods 

Asset Allocation Strategies   

Search Method Adjusting Rule Adjusting Method Simplified Form 

Grid search method periodical 

interval 

rebalance 

rebalance 

Grid-PR 

Grid-IR 
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MPES periodical 

interval 

periodical 

rebalance  

rebalance 

reallocation 

MPES-PR 

MPES-IR 

MPES-Reallocation

 

We used the grid search method as the benchmark to compare with the MPES because 

people usually adopt it to solve the searching problems when they do not have efficient 

methods. The grid search method used the combination of some specific figures to determine 

the allocation of investment portfolio. The number of the asset classes is five and each figure in 

the combination varies by 20%. All asset allocations are non-negative and sum to one, so it will 

produce 126 combinations24. Some examples of the combinations are such as (1, 0, 0, 0, 0), 

(0.8, 0.2, 0, 0, 0), (0.2, 0.6, 0, 0, 0.2), etc.  

VI. MULTI-PHASE EVOLUTION STRATEGIES 

In this section, we introduce the proposed evolutionary strategies algorithm, 

multi-phase evolutionary strategies (MPES). We will first introduce a basic evolutionary 

strategies algorithm and its application to generate the optimal asset allocation for the 

simulation models. Then, we will discuss the ideas and the procedure of MPES and explain 

how MPES is able to improve the performance of the basic evolutionary strategies. 

Furthermore, we will discuss the performance of MPES for five complicated benchmark 

functions.. 

A. Evolution Strategies 

The evolution strategies algorithm (ES) has been presented since 1970s (Rechenberg, 

1973, Schwefel, 1981).  It is a randomized search method that incorporates the nature of 

evolution into its processes.  Evolutionary algorithms, unlike traditional optimization 
                                                 
24 The number of combinations is 12615

!1!2!2
!52

!1!1!3
!53 =++×+×  (The first addition term is the sum of 

permutations and combination in [0.8, 0.2, 0, 0, 0], [0.4, 0.2, 0.2, 0.2, 0], and [0.4, 0.4, 0.2, 0, 0]. The second 
addition term is the result from [0.6, 0.2, 0.2, 0, 0] and [0.4, 0.4, 0.2, 0, 0]. The last two terms are the results from 
[1, 0, 0, 0, 0, 0] and [0.2, 0.2, 0.2, 0.2, 0.2].) 
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techniques, use “population” instead of single points to search and solve complex optimization 

problems.  The population for the initial generation is usually generated randomly.  From the 

members (parents) in the population, genetic operators are then used to produce offspring, and 

the favorable offspring, corresponding to the “survival of the fittest theory” in the biological 

world, are chosen to constitute the population for the next generation.  The process continues 

for generations until a termination criterion is satisfied and a superior solution is acquired.  A 

concise pseudo code of a basic evolution strategies algorithm, denoted as (µ,λ) ES, is presented 

as follows, where µ is the number of parents in the current population and λ is the number of 

offspring produced by the parents for the next generation, and λ is about seven times of µ.:  

(µ,λ) ES Pseudo Code: 

1. Initialize µ parents 

2. For generation :=1 to n do 

3.    Recombination & Mutation from µ parents to produce λ offspring 

4.    Parent selection: Evaluate λ offspring and choose the best µ offspring to be new parent 

5. End Do 

6. Output the first best solution. 

 

A more detailed description of the steps of the (µ,λ) ES algorithm is presented below (Nissen 

and Biethahn, 1995, and Back, 1996).  

Step 1: Generate a population for the initial generation. 

A population of µ solutions (members) is generated. Each solution is usually represented 

by a row vector consisting of two parts. The elements in the first part are the values of the 

decision variables (xj) considered in a given application, and the elements in the second part are 

the mutation step sizes (σj) corresponding to the decision variables in the first part. The 

decision variables in our application are dependent on the asset allocation strategies used.  If 

the periodical reallocation strategy is used, the decision variables will be the proportions of the 
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asset allocations for the five types of risky asset in five periods, so there will be twenty-five 

decision variables.  We randomly generate the proportions of the five asset allocations for 

each period from a uniform distribution with a range of [0, 1].  Note that the sum of the 

proportions of the five asset allocations in a period has to be equal to one, so the proportions 

for each period are simply normalized by summing up the proportions and dividing each 

proportion by the sum. Additionally, in each solution, all the mutation step sizes are set to 3.0 

(Back, 1996).  

 

Step 2: Apply recombination and mutation to the parents to produce λ offspring. 

A pair of parents, A and B, is randomly chosen from the population, and recombination and 

mutation are applied to A and B to produce a child C. Discrete recombination is used to 

determine the first part, the decision variable values of child C. The value of each decision 

variable in C is randomly and equally chosen from the value of the same variable in A and B. 

Intermediate recombination is used to determine the second part, the mutation step sizes of C. 

The j-th mutation step size in C is simply determined by the average of the j-th mutation step 

size in A and B (σj (C) = 0.5 (σj(A) +σj(B)).  The generated child C is then mutated by first 

modifying its mutation step sizes and then adding these step sizes to mutate the corresponding 

decision variables. Each mutation step size σj (C) is modified by the following equation: 

σj
’
 (C) =σj (C) exp(τ’ N(0,1) + τ Nj(0,1)), where N(0,1) is a standard-normally distributed 

random variable, and the values of τ and τ’ are set to 1.0 (Back, 1996) . And, each decision 

variable xj is mutated by the following equation: 

(C)) (0,N  (C)  x (C) x jjjj σ ′+=′ . 

When child C is generated, the simple normalization method is applied to the proportions of 

the asset allocations of each period to maintain its feasibility. The reproduction procedure is 

repeated until λ offspring are produced. 
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Step 3: Evaluate the λ offspring and choose the best µ offspring to constitute the population for 

the next generation. 

The decision variables of a child are submitted to the simulation model, and the 

computational result is the fitness value of the child. 

 

Step 4: Check the termination criterion. If the termination criterion is satisfied, stop; otherwise 

go to Step 2. 

The most commonly used termination criterion is to set the fix generation for the entire 

process.  This criterion is also used in this research.  

B. Multi-Phase Evolution Strategies 

Intensification and diversification are two principles in developing an optimization 

method.  When we applied the basic ES algorithm to solve five benchmark functions, it was 

found that the algorithm usually converged within 100 iterations; the converged solutions were 

affected by randomly generated initial solutions, and the converged solutions were not always 

the optimal solutions.  This may conclude that the basic ES algorithm was able to intensively 

converge to a local optimal solution; however, it was not able to diversely search large enough 

solution space.  The idea behind the multi-phase evolution strategies is to improve the 

diversification capability of the basic ES algorithm.  The basic ES algorithm is implemented 

m times (phases); however, it is not implemented from scratch.  The best φ solutions in the 

last generation in a phase will automatically become the member in the initial generation in the 

next phase, and the other members will be generated randomly.  This design will not only 

improve the diversification capability of the ES algorithm, but also guide the search to good 

solution regions.  The pseudo code of the multi-phase ES algorithm is presented below. 

Multi-Phase ES Pseudo Code: 

1. For multi-phase=1 to m do 
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2.   if multi-phase =1 

3.     Initialize µ parents 

4.  else 

5.    Reset all parameters to initial conditions 

6.    parents = best φ solutions from previous phase + randomly generated (µ-φ) solutions 

7.  For generation :=1 to gen do 

8.       Recombination & Mutation from µ parents to produce λ offspring 

9.       Evaluate λ offspring and save the best φ offspring 

10.  End Do 

11. EndDo 

12. Output the first best solution. 

C. Evaluation of the Multi-Phase Evolution Strategies Algorithm 

Since there are 25 independent variables in some of our asset allocation models, to 

ensure the performance of MPES for the candidate models, five non-linear and multi-modal 

functions, each with 50 variables, are used to evaluate the effectiveness of the algorithm. These 

benchmark functions are selected from Schwefel (1981), Yao and Liu (1996) and Vesterstrom 

and Thomsen (2004).  Table 2 presents these benchmark functions, and Figure 3 to Figure 4 

display the geometric figures of the last three benchmark functions with two variables.  From 

these figures, one can see that there are lots of local optima and un-differentiable areas.  It is 

hard to image how complicated these figures will become if 50 variables are considered.  We 

applied MPES to each of the benchmark functions with five different randomly generated 

initial populations.  Each decision variable in a solution in an initial population was randomly 

generated from a uniform distribution with a range constraining the variable in the benchmark 

functions.  For instance, the constraints for the variables in the first benchmark function are 

, so the range for generating the decision variables was [-10, 10].  The 10 10ix− ≤ ≤
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parameters of MPES were determined by trial-and error in solving these five functions.  The 

population size (µ) was set to be ten times of the decision variables considered in a solution (µ 

= n × 10); the number of offspring (λ) was set to be seven time of µ.  Since, as mentioned 

above, the basic ES algorithm converged within 100 generations when applied to the 

benchmark functions, we set the number of generations (gen) for convergence in every phase 

to be 100.  Also, both of the number of phases, m, and the number of best solutions retained 

for the next phase, φ, were set to be five.  Table 3 presents the computational results.  The 

results show that, for each benchmark function, since the standard deviation approaches 0.0, 

MPES always converged to the optimal solution regardless of the initial populations.  

Therefore, we are confident that MPES is an effective tool for generating the optimal asset 

allocation for the simulation models. 

Table 2: High dimension benchmark functions 
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Table 3: Computational results of MPES for the five benchmark functions 

 Mean Best Value Std Dev 

1f  2.80914e-21 1.15020064249678e-21 

2f  1.0e-26 1.0e-26 

3f  -20949.1443636216 0.0 

4f  1.0e-26 1.0e-26 

5f  8.9706020390e-15 1.9459014222e-15 

 

 

 

 

 

 

Figure 2: Two dimensional sketch of f3. 
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Figure 3: Two dimensional sketch of f4. 

 

 

Figure 4: Two dimensional sketch of f5. 
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VII. RESULTS ANALYSES 

To analyze the performance and asset allocation under different investment strategies 

and search methods, we describe them in three aspects. First, we use the efficient frontier to 

compare the performance with an overview, the comparisons include (1) two rebalance 

strategies with the grid search method (Grid-PR and Grid-IR), (2) one reallocation and two 

rebalance strategies with MPES (MPES-PR, MPES-IR and MPES-Reallocation), and (3) all 

the strategies and search methods. Second, for further analysis, we particularly sought the 

single point of the optimized objective value that considered both of the return and risk 

together. We are not only interested in the improvement on the objective values of the 

reallocation with MPES, but also the asset allocation of all methods. Finally, we still examine 

the asset allocation but especially their changes across risk levels. 

A. Analyses on Efficient Frontier 

The result shows the performance of the interval rebalance is better than that of the 

periodical rebalance during using the grid search method (see Figure 5). The lower points of 

the efficient frontier of periodical rebalance are quite closed to that of the interval rebalance 

until arriving at the risk 0.04. This tells us that the return and the risk of the two methods are 

very similar when the company tends toward conservative. When the company could tolerant 

higher risk, the performance of interval rebalance is more significant. 

 

 70



Figure 5: The efficient frontiers of all strategies using grid search method 

The results of the MPES experiments showed that the reallocation strategy is better than 

other two types of rebalance strategies (see Figure 6). The performance of the MPES-IR seems 

a little higher than the MPES-PR’s. In this figure we are interested in the performance 

improvement of the reallocation. We could understand it through the improvement of the return 

or of the risk. Let us see the part of the return first. There are ten different gaps between the 

returns of MPES-PR and MPES-Reallocation at ten risk levels. The improvements (gaps) of 

the ten points of MPES-Reallocation are 13.04%, 10.04%, 9.74%, 8.70%, 7.39%, 5.82%, 

4.82%, 4.49%, 4.35% and 4.24%. The average is 7.26%. The gaps between MPES-IR and 

MPES-Reallocation are smaller and therefore the performance of MPES-IR is better than 

MPES-PR’s. The gaps are 9.63%, 8.97%, 8.3%, 7.21%, 6.35%, 5.15%, 4.59%, 4.25%, 4% and 

4.4% and the average is 6.28%. Corresponding to the improvement of the return, we also find 

any two points on the separate curves with similar return level but a gap of risk between them. 

We found five pairs of points and each pair has the similar return that the difference can be 

within 1.5%. Under almost the same return level, the risk can averagely decrease 0.02 when the 

company replaces MPES-PR method with MPES-Reallocation. We will omit the comparison 

between MPES-IR and MPES-Reallocation because the results are almost the same as above. 

 

MPES-Reallocation 

MPES-IR 

MPES-PR 

Figure 6: The efficient frontiers of all strategies using MPES 
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 Now let us put all the curves together and see the relationship of all performance for all 

methods and strategies (see Figure 7). We found three interesting things. First, the figure shows 

the results from the best to the worst as ES-Reallocation, MPES-IR, MPES-PR, Grid-IR and 

Grid-PR. Therefore the MPES-Reallocation has the best result in all methods and strategies. 

Second, whether the periodical rebalance or the interval rebalance method, MPES has better 

results than the grid search method. Finally, we also compare the difference of the performance 

between the grid search method and the MPES. Comparing to the MPES-Reallocation, the risk 

of the Grid-IR averagely increases 0.037 under the similar returns and the Grid-PR averagely 

increase 0.053.  

 

MPES-PR 

MPES-Reallocation 

MPES-IR 

Grid-PR 

Grid-IR 

Figure 7: The efficient frontiers of all strategies and methods 

B. Analyses on Utilities 

The MPES-Reallocation still got the best result when it sought the value of objective 

function. It has improvement of 16.16%, 16.49%, 10.04% and 8.97% as it compares with the 

Grid-PR, Grid-IR, MPES-PR and MPES-IR (see Table 4). Under the same periodical rebalance, 

the objective value of the MPES is better then the grid search method by 5.56%. Similarly, 
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llA

The MPES-Reallocation is the only one, which has different asset allocation across the 

strategy times. We can see the stocks are the largest investment item and the 

high-risk-high-return asset is the second largest.  Bonds get zero allocation, on the other hand. 

During these strategy times, the largest change between the highest and lowest asset allocation 

happened in I  and the second one is in 

under the same interval rebalance, the objective value of the MPES is better then the grid 

search method by 6.90%. 

hhAI  insists to increase; nevertheless it always decreases in

hhAI . The difference is that the proportion of 

llAI .  



Table 4: Comparisons of optimized utility using different strategies and methods 

Asset Allocation 
Strateties and 

methods 

Value of the 

Utility 

Avg. Discounted 

Surplus 

Imp. of 

MPES-Realloca

tion 

Ruin 

Prob. 
stock bond hhAI llAI lhAI  

Grid-PR  796,883,205 796,883,205 16.16% 0.0074 0.4 0 0.2 0.2 0.2 

Grid-IR  

  

   

  

794,616,436 794,616,436 16.49% 0.0059 0.4 0 0.2 0.2 0.2 

ES-PR 841,203,931 841,203,931 10.04% 0.01 0.4441 0 0.2284 0.1623 0.1652

ES-IR 849,424,629 849,424,629 8.97% 0.01 0.4751 0 0.2157 0.1130 0.1962 

ES-Reallocation 925,653,245 925,653,245 — 0.01

Reallocations of five periods  

t=0 0.3721 0 0.2043 0.2748 0.1488 

t=5 0.4262 0 0.2664 0.1137 0.1937 

t=10 0.4328 0 0.3543 0.0158 0.1971 

t=15 0.4249 0 0.3852 0 0.1899 

 

t=20 0.2967 0 0.5254 0.0002 0.1777 

avg. of the five reallocations 0.3905 0 0.3471 0.0809 0.1814 
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hhA

The proportions of assets allocation will change when the ruin probability are changed, 

as expected. The data in Table 5-1 and 5-2 indicates that the allocations of stocks are quite 

similar across all the risk levels. However, the bonds seldom appear and just have tiny 

proportions under all risk levels. Regarding three types of the alternative investment, the one 

with high risk and high return gets much more apparently extended proportion when the risk 

gets higher. The difference of the I  allocation between its lowest point and highest point 

is 0.5106. The allocation proportion of 

C. Asset Allocations 

llAI is quite smaller than other assets in any panel. 

When it compares with itself across the panels, we can find that it becomes smaller as soon as 

the risk gets higher. The last assets lhAI  with low return and high risk distributed quite stably 

at proportion 0.2 in all panels.  

We also draw the average proportions of assets at each risk level in Figure 8. Although 

the curve of stock seems descendant, as the risk gets higher, it still maintains the proportions at 

the range 0.3 to 0.4. The curves of bonds, llAI  and lhAI  allocations are quite smooth but 

bonds and llAI  always keep at the low levels that almost reach zero. The curve of hhAI  is 

the only one that insists as ascendant as the risk and its gradient is the greatest. At the 

beginning the proportion of stocks is higher than hhAI  but the hhAI  starts to go beyond the 

stocks at risk 0.02. The proportion of hhAI  even could reach to 0.6 when risk is at 0.1.  

We get some implications from the observations that the stocks and hhAI  always take 

the most part of the allocation but the bonds and llAI  take quite small ones. This reveals that 

the returns of the stocks and hhAI  is relative high to other assets and even could weaken the 

threat of the risks. Unfortunately, the conservation of the bond and llAI  makes themselves 

disappear immediately. Although lhAI  is associated with low return and high risk, it still 

could be used to moderately regulate the risks of the stocks and hhAI . That makes lhAI  keep 

the stable position.  



Table 5-1: The asset allocations across risk levels using MPES-Reallocation for finding the optimal utility (ruin probabilities are from 0.005 to 

0.03) 

 

 ruin prob.=0.005 ruin prob.=0.01 ruin prob.=0.015 

            

  stock bond hhAI  llAI lhAI  stock bond hhAI  llAI  lhAI  stock  bond hhAI llAI lhAI  

t=0 0.3236 0.0000 0.1757 0.3766 0.1241  0.3721 0.0000 0.2043 0.2748 0.1488  0.4097 0.0000 0.1925 0.2143 0.1835  

t=5 0.3598 0.1773 0.2135 0.0926 0.1568  0.4262 0.0000 0.2664 0.1137 0.1937  0.5064 0.0000 0.2659 0.0502 0.1775  

t=10 0.4562 0.0000 0.3497 0.0241 0.1700  0.4328 0.0000 0.3543 0.0158 0.1971  0.4350 0.0000 0.4116 0.0000 0.1534  

t=15 0.5520 0.0000 0.3449 0.0000 0.1031  0.4249 0.0000 0.3852 0 0.1899  0.3692 0.0000 0.4891 0.0041 0.1376  

t=20 0.4205 0.0000 0.3666 0.0000 0.2129  0.2967 0.0000 0.5254 0.0002 0.1777  0.2349 0.0000 0.5262 0.0000 0.2389  

Avg. 0.4224 0.0355 0.2901 0.0987 0.1534  0.39054 0.0000 0.3471 0.0809 0.1814  0.3910 0.0000 0.3771 0.0537 0.1782  

                  

                 

                 

 

 

 77



                 

                 

 

 

 ruin prob.=0.02 ruin prob.=0.025 ruin prob.=0.03 

             

 stock  bond hhAI  llAI  lhAI  stock  bond hhAI llAI  lhAI  stock  bond hhAI llAI lhAI  

t=0 0.3728 0.0023 0.2388 0.2164 0.1697  0.4180 0.0000 0.2470 0.1701 0.1649  0.4357 0.0021 0.2435 0.1679 0.1508  

t=5 0.5310 0.0000 0.2719 0.0075 0.1896  0.4761 0.0000 0.3130 0.0039 0.2070  0.4702 0.0000 0.3301 0.0000 0.1997  

t=10 0.4433 0.0000 0.4120 0.0000 0.1447  0.4256 0.0006 0.4222 0.0004 0.1512  0.4648 0.0000 0.4289 0.0000 0.1063  

t=15 0.3902 0.0000 0.4867 0.0003 0.1228  0.2947 0.0000 0.5405 0.0000 0.1648  0.2645 0.0000 0.5830 0.0000 0.1525  

t=20 0.2377 0.0000 0.5834 0.0000 0.1789  0.3138 0.0000 0.5823 0.0082 0.0957  0.2812 0.0000 0.6089 0.0000 0.1099  

Avg. 0.3950 0.0005 0.3986 0.0448 0.1611  0.3856 0.0001 0.4210 0.0365 0.1567  0.3833 0.0004 0.4389 0.0336 0.1438  
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Table 5-2: The asset allocations of MPES-Reallocation across risk levels for finding the optimal utility (ruin probabilities are from 0.04 to 0.1) 

 

 ruin prob. =0.04 ruin prob. =0.05 ruin prob. =0.07 

             

 stock  bond hhAI  llAI  lhAI  stock  bond hhAI  llAI  lhAI stock  bond hhAI llAI lhAI  

t=0 0.3762 0.0000 0.3076 0.1297 0.1865  0.3752 0.0000 0.3356  0.1050 0.1842  0.4172 0.0000 0.3661 0.0087 0.2080  

t=5 0.4823 0.0000 0.3545 0.0000 0.1632  0.4371 0.0000 0.3991  0.0000 0.1638  0.4083 0.0000 0.4281 0.0000 0.1636  

t=10 0.3601 0.0000 0.5006 0.0000 0.1393  0.4001 0.0000 0.4823  0.0000 0.1176  0.3395 0.0000 0.5587 0.0000 0.1018  

t=15 0.3281 0.0000 0.5724 0.0000 0.0995  0.2983 0.0000 0.5875  0.0000 0.1142  0.2876 0.0000 0.6183 0.0000 0.0941  

t=20 0.2775 0.0000 0.5833 0.0000 0.1392  0.2484 0.0000 0.6456  0.0000 0.1060  0.2144 0.0000 0.6677 0.0000 0.1179  

Avg. 0.3648 0.0000 0.4637 0.0259 0.1455  0.3518 0.0000 0.4900  0.0210 0.1372  0.3334 0.0000 0.5278 0.0017 0.1371  
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 ruin prob. =0.1 

            

 stock  bond hhAI  llAI  lhAI             

           

 

t=0 0.4146 0.0000 0.3888 0.0021 0.1945  

t=5 0.3956 0.0000 0.4908 0.0000 0.1136            

           

           

           

            

 

t=10 0.2174 0.0000 0.6511 0.0000 0.1315  

t=15 0.2356 0.0000 0.6632 0.0000 0.1012  

t=20 0.2422 0.0000 0.6863 0.0000 0.0715  

Avg. 0.3011 0.0000 0.5760 0.0004 0.1225  

 

 



 

Figure 8: The avg. of five-times asset allocations across ten risk levels using 

MPES-Reallocation for finding the optimal utility 

VIII. SUMMARIES AND CONCLUSIONS 

     We used the MPES to solve the hardship of the multi-period asset allocation for 

property-casualty insurer. This issue is based on the views of asset and liability management 

and therefore when the company pursuits the great wealth, it could consider not only the 

assets return and risk but also the business liabilities. For the goal of this study, all the 

experiments have to deal with more than a dozen controllable variables over real intervals. 

The feasible region is therefore large and seldom tools can solve it in effective ways. To 

verify the robust of our methodology MPES, we design some problems for solving by MPES 

and compare the results with other tools. The results of the MPES indicated that this method 

has sufficient superiority and reliability. 

The main efforts of our study are constructing the models of five financial markets and 

two insurance markets, simulating 10,000 paths of scenarios, making five strategies during 
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twenty-five years. To understand the performance of our strategies, we designed two major 

experiments. One is the grid search method the benchmark and the other is the MPES. Both 

of them have to adopt the periodical and interval rebalance and even reallocation method. 

These results of experiments were expressed and compared to each other under the objectives 

of efficient frontier and utility value.    

    The order of the performance that we got regarding the surplus of the company is 

MPES-Reallocation, MPES-IR, MPES-PR, Grid-IR and then Grid-PR. Therefore the 

MPES-Reallocation is the best search method and strategy and the interval rebalance seemed 

more proper than the periodical rebalance. As to the assets allocation in our experiments, the 

high-return and high-risk objectives are more popular. These objectives such as stocks and 

alternative investment with high-return and high-risk always take the most portion of the 

allocation. It means that its return is high enough to compensate the punishment of the risk. 

That successfully makes them outstanding among the assets. In the contrary, the conservative 

ones disappeared immediately.  

    After all, the results demonstrate that the performance of the reallocation using MPES is 

better than other methods in this study. The experiments of MPES also revealed some 

interesting implications to us. In addition to the verification of the robust of MPES we have 

made. Therefore we expect to apply it to study further applications and management issues of 

the property-casualty insurers in the future.   
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APPENDIX 

Items Value 

System parameters 
ϕ  10,000 

nT  25 
  

  
Model parameters in the investment markets 

(1) r  a= 0.07, b= 0.2, v= 0.017 
(2) Stock St = 0.05, Stσ = 0.2 
(3) Bond  

kn  15 
     ( ) kbp knk ,,1= [1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 

1/15, 1/15, 1/15, 1/15] 
(4) hhAI  hhAIµ =0.16;  hhAIσ =0.4 

(5) llAI  llAIµ =0.08;  llAIσ =0.11 

(6) lhAI  lhAIµ =0.10;  hhAIσ =0.4 
  

  
Model parameters of the insurance businesses 

0Pr m  2E+8 
0λ  0.5 

(1) long-tail business 
     lt 10 

  lf 0.4 
  lg 0.03 

    ( ) l
id lti ,,1= [0.4, 0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.04, 0.03, 0.03] 

(1) short-tail business 
     st 3 

  sf 0.25 
  sg 0.03 

    ( ) s
id sti ,,1= [0.8, 0.1, 0.1] 
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rules of asset adjustment 
(1) periodical Adjusting every five years 

(2) interval The changeable proportion of any asset is limited within ± 0.3. 
This result in [ ]3.1,7.0 ×× aa  θθ  to be the boundary of the 
proportions of asset allocation interval, where aθ  is the 
proportion of an asset. 

  
 
 
others 

sr  0.05 
k  2.5E+10 
τ  0.01 
 
correlation matrix R  
 rdW StdW hhAIdW llAIdW lhAIdW

llrdW
     

 

rdW  1 -0.3 -0.2 -0.2 0.4 0.4 

StdW  -0.3 1 0.2 0.1 -0.3 -0.2 
hhAIdW  -0.2 0.2 1 0.3 -0.3 -0.3 
llAIdW  -0.2 0.1 0.3 1 -0.3 -0.3 
lhAIdW  0.4 -0.3 -0.3 -0.3 1 0.2 

llrdW  0.4 -0.2 -0.3 -0.3 0.2 1 
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第三節 

 

I. INTRODUCTION 

The purpose of the following experiments is to understand whether the performance 

of the reallocation is better then the rebalance. Furthermore, we are curious about how the 

asset allocations would vary with different strategies and solution methods. The strategies of 

this study mean the change frequency of asset allocations made by the insurers. They include 

single-period, rebalance, and reallocation. The strategy single-period means the insurers make 

only one asset allocation at the beginning of the investment and do not to interrupt the 

allocation till to the end of the investment. The strategy rebalance means the insurers make 

only one asset allocation at the beginning of the investment and periodically adjust the assets 

back to the initial allocations they previous made. The strategy reallocation means the 

insurers have to make new asset allocations periodically. The solution methods include GA 

and Grid search method. 

In these experiments, we use GA to solve the asset allocations problems and also use 

Grid search method as a benchmark to solve the same problems. Through comparing these 

results we can indirectly evaluate the performances of strategies and methods. We adopted 

the Grid search method as a benchmark because it is a common and basic method that 

researchers usually use it to compare with other methods. The other reason is that when 
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people can not get an efficient method to solve their problems, the Grid search method is a 

basic and easily executed one. However, the Grid search method can not solve the difficult 

reallocation problem, so we just use it to solve the easier ones, rebalance and single-period.    

We executed two categories of optimization problems in GA experiments. The 

problems of first category are to find the optimized value of our utility function without any 

constraints. The problems of the second category are also to find out the optimized value but 

with some constraints. The constraints are some certain values that we set on the ruin 

probability and the sigma value of the capital. The constrained values of the ruin probability 

could be chosen from the seven default values 0.01, 0.02, 0.03, 0.04, 0.05 and 0.07, and the 

sigma default values of the capital are 0.5E+09, 1E+09, 2E+09, 4E+09, 7E+09, 10E+09, 

and 15E+09. Therefore, we can generate 49 combinations at most from the two sets of default 

vales. We used GA solve the problems of rebalance and reallocation strategies. Therefore, this 

study has one hundred GA experiments.  In addition, we executed other 126 experiments25 for 

each of the rebalance and single-period strategies using Grid search method. The experiments 

using Grid search method are easier than these using GA because we can simply get the 

values of the asset allocations from figure combinations. The following table is concise 

                                                 
25 The 126 experiments are executed by the diverse combinations of the asset allocations. This study has five 
kinds of assets and the sum of the allocations of all assets must be one. Each value of the asset allocation can be 
0, 0.2, 0.4, 0.6, and 0.8 as we set. Therefore, the number of combinations is 

12615
!1!2!2

!52
!1!1!3

!53 =++×+×  (The first addition term is the sum of permutations and combination in 

[0.8, 0.2, 0, 0, 0], [0.4, 0.2, 0.2, 0.2, 0], and [0.4, 0.4, 0.2, 0, 0]. The second addition term is the result from [0.6, 
0.2, 0.2, 0, 0] and [0.4, 0.4, 0.2, 0, 0]. The last two terms are the results from [1, 0, 0, 0, 0, 0] and [0.2, 0.2, 0.2, 
0.2, 0.2].) 
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summary about the total experiments. 

 

Table 1: Experiment design 

Search method Asset Allocation 
Strategies 

 Number of exp. Simplified Form 

Grid search method single-period 
rebalance 

 126 
126 

Grid_SP 
Grid_Reb 

GA 
reallocation 
rebalance 

 50 
50 

GA_Rea 
GA_Reb 

 

In the following sections are the experiment results and analyses. The analyses 

include (1) the comparisons of the efficient frontiers between different asset allocation 

strategies and solution methods, (2) the comparisons of the optimized utility function values 

and the portfolios, and (3) the changes of each asset allocation across different risks. The 

related experiments parameters are set in the appendix.  

II. ANALYSES ON EFFICIENT FRONTIER 

Utilizing the efficient frontiers could provide us a quick look at the performance of 

which method and which strategies is the best. The efficient frontier was first defined by 

Markowitz (1952). He considers that an optimal portfolio should be one of the following two 

situations— For any level of volatility, select one portfolio which has the highest expected 

return from all portfolios with that same level of volatility. For any level of expected return, 

select one portfolio which has the lowest volatility from all portfolios with that same 
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expected return. When the investors undertake the different risks, there should be a portfolio 

which can reach the greatest expected return at the risk level that they accept. The various 

highest expected returns across the different risks would form a curve that is called the 

efficient frontier. 

The efficient frontier in Figure 2 is from the results of optimization with the certain 

constraints in our 49 experiments. Actually, both of GA_Rea and GA_Reb have 7 

experiments that we cannot find out the optimized value in all levels of ruin probability 

associated with the value 0.5E+09 of the sigma of capital26. Besides, we have omitted the 

inefficient points from the figure. In the three-dimensional (3D) plot, the x axis and y axis 

express two kinds of risks- ruin probability and sigma of the capital. The z axis is the mean of 

the capital.   

The whole distributions of the points in two plots of Grid search method are quite 

similar (see Figure 2 (c) and (d)). The points of GA_Rea are spread over the wider areas in 

the axis x, y and z. Nevertheless, the values of the ruin probabilities of the points are much 

closed to each other under the same risk levels of sigma of capital in GA_Reb plot. Although 

the whole distributions of the points could be viewed briefly in 3D plots, the efficient frontier 

is too hard to compare the performances of strategies and methods in this style. 

 

                                                 
26 The value 0.5E+09 of the sigma of the capital we set is too small to find out the optimized value. 
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(a) GA-Reallocation (b) GA_Reb 

  
(c) Grid-SP (d) Grid_Reb 

Figure 2: The efficient frontier of various strategies and methods in 
three-dimension plots 

The efficient frontier in two-dimension (2D) style is a valid way to understand the 

performance relationship between the strategies and methods. We could choose one of the 

risks to observe the efficient frontier. The risk we present here is the sigma of capital at a 

certain ruin probability. However, this study cannot search out the optimized portfolio under 

some risk levels we set. The interpolation is a popular method to create the points that we 

need. After creating the new points, all the following 2D plots would be sketched at certain 

value 0.015 of the ruin probability, and we would first discuss the results of single-period and 

rebalance in Grid search method. Latter, we would compare the performances of reallocation 

and rebalance in GA. Finally, a comprehensive analysis of the relationships between 

strategies and all solution methods would be described together.  
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In Figure 3, the performance of Grid_Reb is better than Grid_SP’s. The expected 

return of the Grid_Reb are greater 8.17%, 4.4%, 14.17%, 17.13%, 13.4% and 8.68% than 

Grid_SP as the risks 3.00E+09, 3.50E+09, 4.00E+09, 5.00E+09, 6.50E+09, and 7.00E+09. 

Two curves have positive growth, yet the growth rate of Grid_Reb tends decrease and 

Grid_SP always increases. However, the performance of the Grid_Reb is still better than 

Grid_SP. Even though the Grid_SP grows beyond the Grid_Reb after risk 7.00E+09, the 

Grid_Reb would be more suitable the general and conservative insurers.  

    

 

 
 

In the GA

the performance 

all corresponding

1.79%, 1.37%, a

6.50E+09, 7.00E

growth speeds t

 

Figure 3: The efficient frontier of Grid_Reb and Grid_SP
 part, the efficient frontier of reallocation is higher than that of rebalance, so 

of GA_Rea is greater than GA_Reb (see Figure 4). The differences between 

 points from the left of two curves are 14.10%, 9.81%, 5.48%, 2.21%, 

nd 0.69% under individual risk 4.50E+09, 5.00E+09, 5.50E+09, 6.00E+09, 

+09, and 7.50E+09. The growths of both curves are positive and their 

end to decline. It look similar as Grid part, two curves gradually meet 
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together after the risk 7.00E+09.  
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Figure 4: The efficient frontier of the GA_Rea and GA_Re
ormances of all strategies and solution methods arranged from high to low 

_Reb, Grid_Reb, and Grid_SP (GA_Rea, Grid_Reb, GA_Reb, and Grid_SP 

before 5.50E+09) in Figure 5. The curves of GA_Reb and Grid_Reb intersect 

0E+09. It denotes that Grid_Reb is better than GA_Reb when the risk is not 

 risk is getting higher, the expected return of GA_Reb is preferable to 

e GA and the Grid search method, the GA_Rea and the Grid_Reb have the 

e individually. The difference between GA_Rea and Grid_Reb are 14.02%, 

 4.26%, 4.42%, and 8.61% at the corresponding points under the same risk 

er left of the curves.  
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Figure 5: The efficient frontier of all strategies and methods
III.ANALYSES ON UTILITIES 

timization problems are without any constraints, the values of the objective 

d from the greatest to the worst in Table 2 are GA_Rea, GA_Reb, Grid_Reb, 

e utility value of GA_Rea is better 2.5%, 12.1% and 12.7% than GA_Reb, 

rid_SP. The optimization problems are without any constraints, so the sigma 

d the ruin probability are not limited within some ranges. However, relative 

h method, the ruin probabilities of GA_Rea and GA_Reb are much closed to 

ot exceed yet). The value 0.01 is our punitive boundary that the optimized 

educted once the ruin probability is beyond this default value.  

 asset allocations of all strategies and methods are shown in Figure 6. The 

greatest portion of the asset allocation in GA_Rea and in GA_Reb when the 

iggest part in Grid_Reb and in Grid_SP. The bond takes the smallest portion 

cations in all strategies and methods. The whole distribution of assets of 

94



 
 
 
 
 

ana

opt

so-c

of r

eac

 

 

Grid_Reb and Grid_SP are the same.  

 

s 
Figure 6: The different asset allocations between various strategies and method
We choose the GA_Reallocaiton which has the best performance as the object for 

lyzing the changes of asset allocation across different risks. The data is from the 

imization results of the objective function with constraints. For simplify, we adopt the 

alled integrated risk as the observed risk. The integrated risk is the sum of the two parts 

isk in our objective function. Finally, we averaged the allocations of all experiments for 

h kind of assets across different integrated risks.  

IV. ANALYSES ON ASSET ALLOCATIONS 
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     Mean Risk Asset allocation
The value of 

utility function
The degree of the 

utility value improved 
by GA _Reallocation 

The mean of 
the capital 

Sigma of the 
capital in the 
final period 

Ruin prob.

Stock Bond AI-hh AI-ll AI-lh 
GA_Rea      

927,699,346 - 1,032,838,326 8,761,581,673 0.0098 t =1   0.1810 0.0183 0.3055 0.2745 0.2207 
     t=7    0.2389 0.0526 0.4050 0.1593 0.1442 
     t=13   0.2519 0.0721 0.5009 0.0121 0.1630 
     t=19   0.2237 0.1700 0.3973 0.0668 0.1422 
     Avg.   0.2239 0.0783 0.4022 0.1282 0.1675 
GA – Periodical Rebalance        
  905,175,255 2.5% 989,624,799 6,929,128,680 0.01 0.3118 0.0009 0.3217 0.1948 0.1708 
Grid – Periodical Rebalance        

827,707,091    12.1% 886,285,207 4,881,509,679 0.0038 0.4 0 0.2 0.2 0.2
Grid-one period  

822,971,133    12.7% 912,802,369 7,485,936,406 0.0038 0.4 0 0.2 0.2 0.2

Table 2: The results of find the optimized objective vale using various strategies and methods 
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t allocation across different risks in GA_Rea 

ion for the objective function with constraints across 

nd AI-ll have the more portions in the asset allocation 

e the small parts at the highest risk. On the contrary, 

ond and AI-ll. According to the relationship between 

, the insurer may allocate more funds on the bond and 

stment. The insurer may also allocate more money on 

and AI-hl but little on the bond and AI-ll if he tries to 

 markets.  

ole tendency of the lines, most assets change their 

8 and gets steady after that risk. The AI-hh almost 

.4. However, the risk 8.47E+08 is the second turning 
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point and the AI-hh even can reach the allocation 0.5762. The stock almost changes its 

allocation between 0.2 and 0.3. The changes of AI-hl and AI-ll are quite similar and their 

fluctuations occur within the range 0.1 and 0.2. The bond nearly stays under the position 0.1. 
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報告內容應包括下列各項： 

一、參加會議經過 
個人先是於 7/30 下午參加 board meeting，接著參加 welcome reception。星期一早上

是開幕演講以及 Plenary Sessions。星期二早上與下午則各有一篇文章的

presentation，星期二早上還同時主持了一場。 
 
二、與會心得 

在會議的 reception and breaks 中，和一些舊識與新認識的學者有不錯的互動，很好。

也有機會看到其他學者正在研究的東西，一方面 update 最新資訊，二方面激勵自己。

 
 
三、考察參觀活動(無是項活動者省略) 
  無 
 
 
四、建議 
 
 
五、攜回資料名稱及內容 
 

大會製作之發表人論文集光碟片一份 
 
 
六、其他 

無 
 
 

 

計畫期間參加的第二次會議 

 
第二次會議是由蔽系在台北所主辦的第十一屆亞太風險與保險協會的年

會。會議前我們邀請了聖約翰大學的 Dr. Jean Kown 來台互動。會議期間個人和

許多的學者有相當的互動，一方面由於個人是此協會的理事，二方面我們是地

主，比較瞭解各種狀況，心態上也比較主動。這一次的會議對蔽系在國際上的知

名度有相當的提升，也提升了個人和這個學術社群的關係，相當值得。 


