FREFATAELR gL HF P E + 5442

AT AR R A ds 7 T (2/2)

FraEEL (RER)

s H

W

"

DO s A

: NSC 95-2416-H-004-009-

P95 EO0TP 0L PR 96E07T2 3P
S Y S SIS g W ’EIE’_—*’E ety Bk

DR

DR EE - MmGAE

PRSIy A JliEerIR r FEE AT AR
FALITFE g 4 —JUEeaIm Pl 3 s BNEE - R R

BT L PR 8

PR RE R FARE 2 LG

D AP RN RS T EMAR 2 EGT AR AN

PooE R F/ 9% #1107 01 p



FRRATFELE RN EH/ALE A 52

ks

PRI TEERA R A S T Y

Al B wAIFE
S5+ NSC 95-2416-H-004 -009
HEHE D 94 & 6 ' 1 p I 96 £ 7 1 31 p

FPRFSARIETE R FE LT RRT RS L
Fli 1
FERFLEA(EEF P T E R R

HFE = Wre &
P 5 B/ 96 # 10 : 31 2



Wl ot MAry A T ARE NG Y RIIA K DR A R
b}’%# P F‘}Fmi'lﬁ’:“ﬁ o —jmﬁki? fie eH o

j\%u.%ﬂq; T E kb TR ;‘fg«j,f LR BFEOHEET ) REAR ST T b
&i?éﬁ‘*ﬁ NEN N F Y SO l:’f‘l EHERAR S o iTap enfR N ﬁ_@”?"""#ﬁﬁi; N FRHC
A A BRI B EMAL T AR AR PT URFTRRE L AT ER
DML 2 AP A HERP G EEEEEA A HFLFEYT L L LDy
W BRI 26 c BE A D P RN > AR A TR Y 2003 R
Fukik s AR RE E TP P s o T (7 AR \’;ﬁ%*?:'iﬁ‘lﬁfﬁ’ﬁﬂ'?
BB AR o K F et )i AP R A R T g o L E
M WA W R g R R o Tl B RPEDL RS T HEG T RG TR B

3

-~

/l;pql-/‘é‘i’:‘gggzﬁ—‘?‘;vo% “u“;}—,\f@ ,tﬁ_j}qu'lvi‘.&—;{%\;’

Mgt A% o F ‘;;Tf fe B s WA E



Abstract

Asset allocation is imperative to property-casualty (P/C) insurance companies. It
affects an insurer’s return, risk, solvency, and even premium setting.  Various stakeholders
including managers, shareholders, regulators, and rating agencies pay close attention to the
asset allocation of the P/C insurer.

The literature provides two ways for asset allocation: efficient frontier analysis and
dynamic control method. The former analyzes a portfolio’s return and standard deviation
under a single-period framework. This method ignores other statistics of the outcomes and
generates sub-optimal results in multiple periods. Dynamic control method is theoretically
sound. However, closed-form solutions can be obtained under rare circumstances and
numerous methods can handle only few state variables. Investors who want to execute
multi-period asset allocation rely on the so-called re-balancing methods. This method has no
theoretical justifications though. Furthermore, the finance literature does not take the
underwritten businesses into account. The insurance literature, to our knowledge, provides no
reference for the optimal asset allocation of P/C insurers.

This project utilizes one of the recent advances in operational research, simulation
optimization, to search the optimal asset allocation of a P/C insurer. We first develop a
program to simulate the operations of the insurer. The simulated insurer can invest in cash,
bonds with different maturities, stock, and real estate. The insurer underwrites both short-
and long-tail businesses. The simulation goes on for 26 periods. Then we apply the genetic
algorithms (GA) and evolution strategies (ES) upon the developed program to solve the
optimization problems. We employ parallel computation to simulate sufficiently large

number of simulations to secure the robustness of our optimization search. The resulted



allocations do perform better that the ones obtained using the efficient frontier and re-balancing
methods. Our results thus have potential practical value in addition to the contribution to the
insurance literature.

This project will results in at least three journal articles. We have submitted one paper
to an international journal and are wrapping up the second one. The results for the third paper

are in hands already.

Keywords: property-casualty insurance companies; asset allocation; simulation optimization
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ABSTRACT

Dynamic financial analysis (DFA) is a useful decision-support system for the insurer, but it
lacks optimization capability. The contribution of this paper is that it incorporates a
simulation optimization technique into a DFA system. With the ability to optimize, the DFA
system proposed in this paper was able to solve the asset allocation problem of a
property-casualty insurance company. The simulation optimization technique used herein is a
generic algorithm, and the optimization problem is a constrained multi-period asset allocation
problem. We find that coupling DFA with simulation optimization resulted in significant
improvements over a basic search method. The result was robust across random number sets.
Furthermore, the resulting asset allocation changes with the parameters of the risk models as
well as the insurer’s specifications in a way that is consistent with the differences in the
parameters. Incorporating optimization features in DFA is therefore feasible, useful, and

robust and should create considerable interest in the insurance industry.

Keywords: dynamic financial analysis; simulation optimization; asset allocation

JEL Classification: G22, C61



I. INTRODUCTION

How to manage a property-casualty (P&C) insurance company is a major issue for
various stakeholders including managers, shareholders, policyholders, and regulators. More
specifically, the concerns are as to how a number of factors such as asset allocation, trading
styles, capital structure, business growth, business allocation, reinsurance arrangement, and
other decisions affect the value and the solvency of a P&C company. Assessing these various
decisions is difficult, however, because a P&C insurance company is subject to double-sided
uncertainties: the liability risk as well as the asset risk. In addition to the uncertainty
regarding asset values, P&C insurance companies do not know how much they will have to
pay for the products they sold. A comprehensive tool that simultaneously assesses both the
liability and the asset risks of a P&C insurer is essential to competent and sound management.

The dynamic financial analysis (DFA) system is promising. A company-wide DFA
system can simulate the distribution of an insurer’s surplus/equity at some point of time in the
future under various assumptions about the insurer’s underwriting and investment strategies,
the underwriting outcome, and the evolution of the financial markets. An insurer’s value and
risk/solvency can then be defined upon the simulated surplus distribution, and people can use
the simulated surplus distribution to make choices among alternative strategies. More
specifically, a DFA system is capable of incorporating an insurer’s new businesses, the
uncertain payments for the insurance products sold, the insurer’s asset allocation/disposition
decisions, and the stochastic returns of financial assets to dynamically simulate the evolution of
the insurer’s financial conditions. Alternative underwriting and/or investment strategies can
then be compared based on how they affect the development of the insurer’s financial
conditions. For instance, an insurer can use a DFA system to assess asset allocation strategies
by examining the impacts of alternative strategies on the surplus distribution over a target time
horizon. The DFA system therefore can help managers make investment and business

decisions in a comprehensive and robust way.



The DFA system has two major advantages over the commonly used financial ratio
analysis and other static analyses. First, a DFA system can incorporate future external
changes and internal decisions in addition to the information embedded in financial ratios.” It
is therefore superior to static analyses for profiling an insurer’s financial strength. Second, a
DFA system explicitly considers the relations among risk factors and financial variables. Risk
factors such as interest rates, equity asset prices, and real estate prices are correlated. The
values of an insurer’s various types of assets are thus correlated with each other as well.

Financial variables are further bound by two simple equations:

ZAssetl.J - ZLiabililyN = Surplus,, and (1)
i j

ZAAssetl.J - ZALiabilily_N = ASurplus, (2)
i J

, Where Asset;, and Liability;, represent the values of individual asset and liability items at time
t respectively, and A(.) denotes the change of the variable. The first equation depicts the
fundamental relations among financial variables at any point in time; the second equation
captures the dynamic relations among the variables across time. The financial ratio analysis
and other static analyses have difficulties in taking full account of the correlations, fundamental
relations, and dynamic relations among the variables.

The construction of a DFA system for the P&C insurance company dates back to almost
two decades ago. Insurance and actuarial scholars started conceptual discussions in the late
80s (Pentikainen, 1988; Taylor and Buchanan, 1988; Coutts and Devitt, 1989; Paulson and
Dixit, 1989; Taylor, 1991). The British Institute of Actuaries Working Party on Insurance
Solvency and actuaries soon developed P&C insurance company simulation models that could
be used to evaluate the solvency of a company (Daykin et al., 1989; Daykin and Hey, 1991;

Daykin, Pentikainen, and Pesonen, 1994). The Casualty Actuarial Society of the United

* The information embedded in financial ratios is taken into account in the DFA system in the form of the initial
position inputs.



States embarked upon a long-term, multi-stage project entitled “Dynamic Financial Analysis”
in the mid 90s. Starting from identifying risk factors and variables, this project not only
developed general specifications for insurance company financial models but also studied
refined issues such as model parameterization, result interpretation, and management/strategic
usage. The potential of a DFA model was demonstrated by Cummins, Grace, and Phillips
(1999) in which the scenario analysis conducted using a simple cash flow model outperformed
the early warning and capital requirement systems employed in the United States for the P&C
insurance company.

The DFA system, albeit powerful, tells us only which proposed strategy is better. It
cannot tell us what the optimal strategy is. The DFA system generates surplus distributions,
given users’ input about initial positions and strategies. It does not have the
mechanism/algorithm to search for the optimum. Managers therefore have to make educated
guesses on what the optimal strategy looks like and employ the trial-and-error method to shoot
for a good strategy. Trying all possible strategies to seek for the optimum is infeasible due to
the large number of decision variables. A DFA system without an optimization mechanism is
therefore incapable of helping managers maximize the shareholders’ value. The goal of this
paper is to illustrate how to couple the technique of simulation optimization with a DFA system
so that an insurer can use the improved DFA system for making optimal decisions.

Simulation optimization is the process of determining the values of the controllable
input variables that optimize the values of the stochastic output variables generated by a
simulation model. The controllable input variables, also called decision variables, in the case
of a DFA may include asset allocation, trading frequency, rebalancing interval, capital structure,
business growth, business allocation, and reinsurance arrangement.> The output variables,

also called the response variables, are usually a function of the expected value of simulated

3 A simulation model might also have parameters that are not controllable. ~For instance, the financial market and
the underwriting market parameters are uncontrollable inputs in the DFA system.
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surplus, insolvency probability, and other concerns of the board (e.g., meeting the capital
requirement). The simulation model itself (a DFA system in this paper) can be thought of as a
complex function mapping controllable input values to response values.* In short, the
simulation optimization problem can be characterized as a stochastic search over a feasible
exploration region (Keys and Rees, 2004).

Tekin and Sabuncuoglu (2004) classified the techniques for simulation optimization
into two main headings: local optimization and global optimization. Local optimization
techniques assume that response values have a uni-modal surface. Some of them are iterative
while some require gradient information. Therefore, when the response surface is
high-dimensional, discontinuous, and/or non-differentiable, local optimization techniques are
often trapped into a local optimum and fail to find the optimal solution. On the other hand,
global optimization techniques such as evolutionary algorithms, simulated annealing, and tabu
search can be applied to these types of problems, and they are designed for problems with
multi-modal response surfaces.

The contribution of this paper is applying one of these global optimization techniques
to a DFA system to solve the asset allocation problem of the property-casualty insurance
company. Our DFA system contains four asset classes (cash, bonds, stocks, and real estate)
and two types of insurance businesses (long- and short-tail businesses) to capture the essence
of the insurance company’s operations. Although the DFA system is simple when compared

with commercial packages, it is complex enough to preclude one from finding optimal decision

* Due to its stochastic nature, repeated runs of the model lead to different outputs even when using the same
values of controllable inputs. The average value of the output is often calculated, and the deviations from the
average are subsequently analyzed.

> The feasible region is defined by the practical limits on the ranges of the controllable inputs. Examples of
practical limits include short-sale constraints and upper bounds on portfolio weights faced by most financial
institutions. The optimization problem is difficult to solve for several reasons. First, the function represented
by the simulation model is almost always unknown. Second, the deviations from the average are usually
significant, heterogeneous over the feasible region, and not normally distributed. Third, the feasible region is
usually large because of the large number of controllable variables.
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variables analytically.® We therefore resort to some of the recent developments in simulation
optimization. We choose one of the most popular evolutionary algorithms (EAs), the genetic
algorithms (GAs), to optimize our DFA system. EAs work on a population of solutions in
such a way that poor solutions become extinct while good solutions evolve to reach for the
optimum. The most popular EAs are GAs, evolutionary programming (EP), and evolution
strategies (ES). EP and ES have not yet been widely used in simulation optimization, but
GAs have been successfully applied to the optimization problems arising in complex
manufacturing systems (Tekin and Sabuncuoglu, 2004). In our simulation optimization
problem, the objective function incorporates the expected discounted surplus as well as the
insolvency probability. This objective function will result in an asset allocation that balances
return with risk. The optimization problem is formulated as a multi-period one with
short-sale constraints.’

Our results show that the application of simulation optimization to DFA is feasible,
useful, and robust. Our GA introduces a significant improvement over a basic search method.
The resulting “optimal” asset allocations look reasonable without extreme positions.®
Furthermore, our method is robust across different random numbers. The value of the
objective function is insensitive to the generated random numbers. Different parameter sets
result in different optimal asset allocations, as expected, and the changes in the optimal
solutions are comprehensible with respect to the differences in the parameters. Therefore it

can be concluded that the application of simulation optimization in DFA is successful.

% The impossibility is due to three reasons. ~ First, the system contains several types of stochastic processes. The
function represented by the simulation model is thus unknown. Second, the variations of the outcomes generated
by the system are significant, heterogeneous over the feasible region, and not normally distributed. Third, the
system has 12 controllable variables over real intervals. The feasible region is therefore large.

7'Such a problem is difficult to solve. It can be attacked by the methods of dynamic programming, and the
solutions are characterized by the Hamilton-Jacobi-Bellman (HJB) partial differential equations. However, the
HJB equation has only been solved in few specific cases. Even if the solution can be obtained, the required
long-winded technicalities are awkward for practical uses. The short-sale constraints make the problem even
more difficult.

¥ Readers should be aware that simulation optimization is a heuristic search method. ~The existence of the
optimal solution is not proven, and there is no verification theorem to show that the resulted solution from
simulation optimization is at least as good as all other solutions. The word “optimal” is used loosely in this
paper to mean “the best known solution.”
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The rest of this paper is organized as follows. Section 2 describes our DFA system,
including the setting of the financial markets and insurance markets, the dynamics of the
representative insurer’s financial positions, and the optimization problem of the insurer. In
Section 3 our genetic algorithm is described in detail. It starts with an introduction to
simulation optimization and is followed by a brief review on genetic algorithms and a detailed
description of our proposed algorithm. The application results are discussed in Section 4.
We first provide the simulated interest rates, equity index, and real estate index to display some
outputs of our DFA system. Then we demonstrate a basic searching method for the
single-period asset allocation problem and end section 4 with analyzing the results using our
GA. Finally, in Section 5 we make our summaries and draw our conclusions.

Il. THE DYNAMIC FINANCIAL ANALYSIS SYSTEM
A. The financial markets and the insurance markets
In this section, we set up five types of markets and specify their stochastic processes.

We assume that the risk-neutral process for the one-year spot rate at time ¢, 7(?), is:

dr(t) = q(m —r(t))dt + &, +r(t)dW (3)
, where ¢ is zero or a positive integer, m stands for the long-term average of spot rates, ¢
reflects the speed of mean reverting (0<g<1), &,.=[v 0 0 0 0], and

dw =[dW, dWg dWgg dWiray Wires)l- dW represent the differentials of

five-dimension Wiener processes including the processes of the one-year spot rate (r), the
equity index (S), the real estate index (RE), the loss ratio of the long-tail insurance liabilities
(LR(L)), and the loss ratio of the short-tail lines (LR(S)). It has a correlation matrix 97
specifying the correlations among the Wiener processes. The mapping from short rates to
Treasury bond prices has been derived in Cox, Ingersoll, and Ross (1985): the price at time ¢ of
a default-free zero-coupon bond that pays $1 at time 7 equals

P.(t,r) = A(T —t)e """ 4)

13



2(e™ 1)
(r+q)e* -1)+2y’

, where T'is a positive integer, 7 >¢, B(x)=

2gm

X 2
—(q+y) o

2 2
A,(x) = ad and 7 =+/g% + 202 .

(g+y)e” =D +2y

The equity index is assumed to evolve according to the following interest-rate-adjusted

geometric Brownian motion process:

ds(t) _
——==(r(t)+xm)dt+&,dW 5
S0 (r()+7y) s )
, where the constant parameter 7 denotes the risk premium on the stock index investment,

and 6g=[0 og 0 0O 0]. We assume that the real estate index follows a geometric

Brownian motion:

dRE(1)
RE(t)

dt + & oy dW (6)

, where the constant parameter x denotes the expected return of the real estate investment per

period with continuous compounding, and G =[0 0 opr 0 O0].

In the insurance markets, insurers underwrite both long-tail and short-tail businesses.

We assume that the loss ratio of the long-tail businesses follows:

dALR(L)(t) =G g, < dW (7)
,where G7p)=[0 0 0 ozppy 0]. The loss ratio of the short-tail lines has a similar

process to equation (7) with a different volatility &,p5)=[0 0 0 0 orps)l]-

The parameters for the above five models are specified as follows.

Model Parameters

Short Rate m =6% qg =03 v =2%

14



Equity Index Ty =6% og =20%

Real Estate Index u =15% ore =35%
Loss Ratio (Long) mean = 75% orr) =30%
Loss Ratio (Short) mean = 80% OLR(L) =25%

The starting value of the short-term interest rate is 6%. Furthermore, the correlation matrix %7

is specified as follows.’

dWs dw, AWira) dWre

dWs 1 -0.31 -0.19 0.36

dw, -0.31 1 -0.004 -0.03

AWira 20.19 20.004 1 0.47
dWrg 0.36 -0.03 -0.47 1

B. The dynamics of the insurer’s financial status

Suppose that a newly established property-casualty insurer starts to underwrite
insurance businesses with a surplus of /5(0) million dollars. It receives premiums of /P(0)
million dollars in cash at the beginning of year 1 with B(0) (0 < B(0) <1) being the proportion
of the businesses in the long-tail lines. To underwrite these businesses, the insurer incurs and
pays underwriting expenses in cash and upfront. The underwriting expense ratios of the long-
and short-tail businesses are assumed to be Exp(L) and Exp(S) respectively, where both ratios
are positive but smaller than one.

The remaining cash and the initial surplus are then invested in cash, Treasury bonds,

equity index, and real estate index with the proportion vector #(0), where

? The correlation coefficients are estimated using the historical data on S&P 500 index, Indexes of All Publicly
Traded REITs, Treasury Bill Rates, and the loss ratios published in Best s Aggregates and Averages. The
sampling period is from 1972 to 1999. dW/gs is not in the matrix because we assume that the loss ratio of
short-tail businesses is independent of other processes.
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8(0)=[6,(0) 6,00 6,00 6,0)], 6,0), 6,(0), 6,(0),and 6,(0) is the proportion of

the wealth invested in cash, equity index, Treasury bonds, and real estate index respectively.

Obviously 2?21491« (t)=1. We further assume that 6;(¢#) >0 since insurers are almost

always subject to short-sale constraints from regulation. The maturity of invested bonds

ranges from one year to fifteen years, and the invested proportions are assumed to be even

across the maturities for the sake of simplicity. Assuming that the fair value of the reserves

equal to the premiums written net of expenses, we get the following balance sheet of the

insurer at the beginning of year 1:

Assets Liabilities and Surplus

Liabilities of

Cash $ (6,(0) *Total Assets)
Long-Tail Businesses
Liabilities of

Stocks $ (6,(0) *Total Assets)
Short-Tail Businesses

Treasury

$ (6,(0) *Total Assets)
Bonds

Real Estate $ (6,(0) *Total Assets)  Surplus

$ B(0) * IP(0) *
(1-Exp(L))

$ (1- B(0)) * IP(0) *

(1-Exp(S))

$ IS(0)

$ (1S(0)
+ B(0)*IP(0)*(1- Exp(L)) Total Liabilities and
Total Assets
+ (1-B(0))*IP(0)*(1-  Surplus

Exp(S)))

$ (IS(0)+ B(0) * IP(0) *
(1- Exp(L))
+ (1-B(0)) * IP(0) *

(1- Exp(S)))

At the end of the year, investment returns and loss ratios are realized according to the
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stochastic models in section A.'  To account for loss development and business growth we
assume that the insurer’s long-tail businesses grow G(L) annually and have a ten-year

development period with a loss development function D, (dy), where dy =1, 2, 3, ..., or 10,

0<D;(dy)<1,and Zil());le 1 (dy)=1. The short-tail businesses have an annual growth

rate of G(S) and a three-year development period with a loss development function Ds(dy),
wheredy=1,2,0r3, 0<Dg(dy)<1, and Zf{y:lDS (dy)=1. Simulated loss ratios

represent a multiple of the ultimate loss divided by the premiums written, where the ultimate
losses for the businesses written in any given year are defined as the total payments across all
development years paid for the written businesses''. More specifically, the ultimate losses for

Simulated Loss Ratio x Premiums Written in Year t

the businesses written in year ¢ equal -
An Adjustment Factor

The loss payment in development year dy for the businesses written in year ¢ is then equal to
the #-th year’s ultimate loss times D (dy) or Ds(dy).

To pay losses, the insurer sells assets proportionally.  Specifically, we assume that the
insurer sells each type of invested assets, including cash, Treasury bonds, stocks, and real
estate by the proportion of the asset’s market value to the total asset’s value. The asset
allocation of the insurer will thus be unaffected by the sale of assets. We then deduct the
amount of losses paid from reserves and attain the year-end balance sheet for year 1.

At the beginning of year 2, the insurer underwrites /P(1) million dollars of businesses,

pays underwriting expenses for long- and short-tail businesses, and invests the net amount in

1% We assume that the return on cash is 7(?).

" The multiple, also called the adjustment factor in the paper, is to account for the effect of growth and time value
of money. For an insurer that does not have growth in premiums written, calendar-year loss ratios are equal to
the ratio of the ultimate losses to the premiums written. For a growing insurer, however, calendar-year loss ratios
will be less than the ratio of the ultimate losses to the premiums written because the denominators of loss ratios
grow with time. Furthermore, time value of money should be considered.

"2 Reserves might be smaller than loss payments in extreme cases. We set reserves as zero in these cases and
deduct the deficit from surplus.
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cash, Treasury bonds, stocks, and real estate with the proportion vector #(1)."* Our

simulation model then generates investment returns and loss ratios for year 2. The insurer
pays losses at the end of year 2 by selling all types of assets proportionally. Reserves are
reduced by loss payments, and we obtain the year-end balance sheet for year 2 thereafter.
Similar procedures are repeated for twenty-five years, or, repeated until the insurer becomes
insolvent. The insurer is deemed insolvent whenever its surplus (/5(?)), the difference
between the market value of assets and the fair value of reserves, is smaller than zero.

The parameters of the representative insurer are set as follows: 1S(0) = 120, IP(0) = 200,

B(0) = 50%, Exp(L) = 25%, Exp(S) = 20%, G(L) = 5%, G(S) = 4%, and

dy 1 2 3 4 5 6 7 8 9 10

Dy(dy) (%) 50 30 10 5 3 1 05 03 01 0.1

Ds(dy) (%) 80 15 5

% The above parameters and the parameters of the underlying risk models are chosen so that

the insurer has an “adequate” insolvency probability to facilitate subsequent analyses. We
tried various sets of parameters and learned that the key variables to the insolvency probability
are the initial premium-to-surplus ratio, sum of the expense ratio and expected loss ratio,
growth rate, returns of investments, and volatilities of risks.  As expected, higher leverage
ratios, combined ratios, and/or volatility of risks result in higher insolvency probabilities while
higher expected investment returns lead to fewer bankruptcies.
C. The optimization problem

We assume that the insurer’s objective is to maximize a utility function over the time

horizon [0, H]. The utility function consists of two components: expected discounted surplus

' Notice that IP(t+1) = IP()*B(t)*(1+G(L)) + IP(1)*(1-B(t))*(1+G(S)).

'* After a simple spreadsheet work, we obtain an adjustment factor of 0.9449 for the long-tail businesses given a
growth rate of 5%, a discount rate of 7%, and the specified D;(dy). The adjustment factor for the short-tail
businesses is 0.9905 given a growth rate of 4%, a discount rate of 7%, and the specified Ds(dy).

18



and ruin probability. The insurer prefers high expected discounted surplus but low ruin

probability. More specifically, the optimization problem of the insurer is:

I H

NP IIC)
maxizl =1(1+s) —k(ruin _ probability — x) (8)
o(t) !

, Where 7 is the number of the simulated paths in which no insolvency occurs, s is a constant
chosen subjectively by the insurer to discount future surplus 75(?), k is also a constant chosen
by the insurer to reflect the relative importance of excessive insolvency probability to expected
discounted surplus, and x is the tolerable insolvency probability of the insurer.

The decision variable used to maximize the objective function is the asset allocation
A(t). Allocating more funds to high-risk types of assets may result in higher expected

surplus. It will however also result in higher ruin probability at the same time, which may not
be optimal. A low ruin probability can be achieved by allocating more funds to low-risk
assets. Such a strategy may not generate adequate returns for shareholders on the other hand.
Therefore, the optimization problem can be deemed as a search for the optimal balance
between risk and return through asset allocation.

In the following simulation, we set H at 25 years and the number of simulated paths at

5,000. The discount rate for future surplus per period s is assumed to be 3%, k is chosen to be

4x10'° ,and x =2%. Without loss of generality of the multi-period asset allocation problem,
we reduce the optimization problem from 25 years to 4 periods for the sake of computation
time."”> More specifically, the insurer makes asset allocation decisions at =0, 6, 12, and 18,
and keeps the allocation the same as the previous year’s at all other times. The number of
controllable variables is thus reduced to 12. A single-period asset allocation problem will
have only three controllable variables, which may be solved using other simpler techniques.

I11. THE SIMULATION OPTIMIZATION TECHNIQUES

' The last period starting from the fourth asset allocation is therefore 7 years.
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A. An introduction to optimization via simulation

To solve the optimization problem set up in section II, we make use of the simulation
optimization techniques. Optimization in the field of operations research has long been
synonymous with mathematical programming. Due to the rapid advances in computational
efficiency, there are now many techniques to optimize stochastic systems via simulation.
Generally the problem setting is the following parametric optimization problem:

max J(6) ©)
Q)

, where J(0)=E[L(6,®)] is the performance measure of the problem, L(8,w) is called the

sample performance, @ represents the stochastic effects of the system, &1is a p-vector of

controllable variables, and @ is the constraint set on 6. Let us also define the optimum as

0 = argmax J(6).
2S{C)

Various simulation optimization techniques have been proposed to solve the above
optimization problem. Several survey papers such as Fu (1994), Andradottir (1998), and
Tekin and Sabuncuoglu (2004) have provided comprehensive coverage on the foundations,
theoretical developments, and applications of these techniques. Existing techniques can be
classified into two types: local optimization and global optimization. Local optimization
techniques are further classified in terms of discrete and continuous decision spaces.'®  Figure
1, copied from Tekin and Sabuncuoglu (2004), demonstrates the aforementioned classification
scheme.

The major difference between local and global optimization techniques lies in the
assumption about the shape of the response value surface, i.e., uni-modal or multi-modal.
Local optimization techniques are therefore not suitable for those cases in which the function

represented by the simulation model is complex and multimodal. These algorithms are

% In a discrete space, decision variables take a discrete set of values such as the number of machines in a system.
The feasible region in a continuous space, on the other hand, consists of real-valued decision variables such as the
release time of factory orders.
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usually trapped in a local optimum and generate poor solutions, without an effective method to
find good initial solutions. Global optimization techniques are developed to help a search
escape from the local optimum. In the SCI and SSCI database we found over four thousand
technical papers demonstrating that global optimization techniques such as tabu search,
simulated annealing, and evolutionary algorithms can help the search escape from local
optimum and produce better solutions.

Among the global optimization techniques, we chose evolutionary algorithms (EAs) for
the DFA system. Using EAs in simulation optimization is on the increase lately because they
require no restrictive assumptions or prior knowledge about the shape of the response surface
(Back and Schwefel, 1993). In general, an EA has the following procedures: generate a
population of solutions, evaluate these solutions through a simulation model, perform the
selection, apply genetic operators to produce new offspring, and insert the new offspring into
the population. These steps are repeated until some stopping criterion is reached.

The most popular EAs are genetic algorithms (GAs), evolution programming (EP), and
evolution strategies (ES). These algorithms differ from each other in the representation of
individuals, the design of variation operators, and the selection of their reproduction
mechanisms. In general, each point in the solution space is represented by a string of values
for the decision variables. The crossover operator breaks the strings representing two
members of the population and exchanges certain portions of the strings to create two new
strings. The mutation operator selects a random position in a string and changes the value of
that variable with a pre-specified probability. Appropriate crossover and mutation operators
can reduce the probability of being trapped in a local optimum.

Among the GAs, EP, and ES, we chose to employ a GA to optimize the DFA system.
The main reason for the choice was that GAs have found more applications for the optimizing
problems in complex systems than either the EP or the ES.  Also, we have applied GAs to

several discrete optimization problems before (Chen et al. 1995, Chen et al. 1996, Chen et al.
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2003). The following section gives a brief introduction on GAs and describes our GA in
detail.
B. Genetic algorithms

The search procedure of GAs combines reproduction and recombination to mimic the
process of natural evolution. An optimization problem solved by GAs can be explained as
follows. The solution space of the problem is viewed as the environment of evolution. A
solution of the problem is a member of a species in the environment. A generation of the
species is presented as a population of solutions. Darwin's concept of survival of the fittest is
then applied to the solutions in the population. The objective value of a solution is a measure
of its fitness. The better the fitness of the solution, the higher the probability that the solution
can be chosen as a parent to produce new solutions (offspring) for the next population
(generation). Genetic operators (usually crossover and mutation) have to be applied to the
chosen parents to produce offspring.  As this process continues for generations, the fitness of
the members (objective values of solutions) improves.

Based on this explanation, the procedure of a basic genetic algorithm can be described
as follows.'”  Let S(z) denote the population in the #-th generation, s;(?) the i-th member in S(2),
f(si(t)) the fitness of s;(2), Totfit the sum of f(s;(t)) in S(t), popsize the population size, and
maxgem the maximum number of generations for convergence. Then a GA usually has the
following steps.
Step 1: Generate an initial population, S(z), where ¢ = 0.
Step 2: Calculate the fitness value for each member, f{s;(z)), in population S(z).
Step 3: Calculate the selection probability for each member, which is defined as f(s;(z))/Totfit.
Step 4: Select a pair of members (parents) randomly according to the selection probability.
Step 5: Apply genetic operators to the parents to produce the offspring for the next population,

S(t+1). If the size of the new population is equal to popsize, then go to Step 6;

"7 The following descriptions are mainly drawn from Chen et al. 1995 and Chen et al. 1996.
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otherwise, go to Step 4.
Step 6: If the current generation, ¢+ /, is equal to maxgen, then stop; else go to Step 2.

According to the above basic procedure, the application of a GA must consider the
following factors: (1) representation of a solution, (2) initial population, (3) selection
probability, (4) genetic operators, (5) termination criterion, and (6) three parameters:
population size, crossover rate, and mutation rate. In the following, each of these factors and
parameters will be discussed in detail for a GA to generate the optimal asset allocations
through our DFA system.
1. Representation of a solution

A solution for GA application is usually represented by a row vector. The value of an
element in the vector refers to the allocation to an asset in a period. The number of elements
in the vector depends upon the number of investable assets considered in a period and the
number of periods considered in a problem. Since four assets are considered in four periods
with the constraint that the sum of the allocations is equal to one, twelve elements are included
in the vector in the current application.
2. Initial population

The initial population of our GA is randomly generated as most applications of GAs are.
Since the value of an element in the vector is in the range of [0, 1], we first generate three
random numbers from the uniform [0, 1] distribution. If the sum of the three generated
elements is greater than one, then the elements will be multiplied by 0.9 consecutively until
their sum is less than or equal to one. We call this procedure a feasibility-keeping procedure.
The purpose of the procedure is to ensure that the fourth element will not be negative and
violate the short-sale constraint. Note that the feasibility-keeping procedure has to be
implemented to all four periods in each vector.
3. Selection probability

The selection probability of a member in a population should generally project the
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performance measure of the member. Usually, a member with a better fitness in a population
would have a higher probability of being selected. Since the candidate problem is to find an
asset allocation that maximizes a specified utility function, the value of the utility function is
used as the fitness value of the corresponding asset allocation. The larger the value of the
utility function, the higher the probability the corresponding set of allocations will be selected.
The following procedure is an application of the well-known roulette-wheel selection scheme
for calculating the selection probability of a member in a population.

Step 1: Calculate the fitness f{i) for each member in the population.

Step 2: Calculate the total fitness, 7Totfit, of all the members in the population.

Step 3: Calculate the selection probability for each member that is equal to f{i)/Totfit.

A complementary selection strategy (elitist strategy) is also considered in the current
application. More specifically, the member with the best fitness value in each population will
always survive and automatically become a member in the next generation. The purpose is to
preserve the best solution so that the search always covers certain good solution regions.

4. Genetic operators

Genetic operators are performed on the parents to generate offspring. Crossover and
mutation are two common genetic operators of GAs.
4.1 Crossover

An effective crossover operator, BLX-0.5 (Eshelman & Schaffer, 1993), is used in this
research. Two selected parents, vectors A and B, are given and denote the values of an
element in A and B as x and y respectively. The BLX-0.5 is implemented to x and y in the
following procedure to produce a value z for the element in the offspring generated by A and B.
Step 1: Let A= 0.5 * |y-x|.

Step 2: Randomly generate z from the range of (x-A, y+A) if x < y; let x-A = 0 if x-A <0, and let

ytA=1,if y+A>1. Otherwise, randomly generate z from the range of (y-A, x+A); let
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y-A=01fy-A <0, and let x+tA =1 if x+A > 1.

For example, let (x;, x2) = (0.5, 0.2) be the values of the first two elements in A and let
(71, 2) = (0.1, 0.8) be the values of the first two elements in B. The values of the first two
elements, (zj, z2) of the offspring of A and B can then be generated as follows. Let A; =0.5 * |
yi—=x1]=0.5%|0.1-0.5/=0.2and A, =0.5 * |y, —x2/ =0.5 %]0.8 = 0.2| = 0.3. Then
randomly generate z; from the range of (y;-Aj, x;+A;) = (0.1-0.2, 0.5+0.2) = (0, 0.7) and

randomly generate z, from the range of (xz-Az, y2+A;) = (0.2-0.3, 0.8+0.3) = (0, 1.0).

4.2 Mutation
When a solution is produced by crossover, a mutation operator is applied to the solution.
Michaleicz (1996) developed a non-uniform mutation operator and showed that the operator
outperformed other mutation operators after performing thorough experiments. A
non-uniform mutation operator is applied in this GA application by following the procedure.
Step 1: Randomly select k elements out of the 12 elements in the solution, where k=1 +
Int[rnd*12] and Int is an integer function.

Step 2: Apply the non-uniform mutation operator to each of the k£ elements. It is given that

element 7 is one of the k elements and z; is the value of element / in the current
generation £, The value of element i in generation t+1, z/*', is generated as follows:

zZ™ =zl + AW, 1.0- z!)ifrnd < 0.5; otherwise z/"' = z! - A(t, z!), where A(z, v)

=y * (1.0 - rnd”), b= (1.0 — ¢/T)’, and T'is equal to maxgen (the maximum number of

generations for convergence).

Note that b = (1.0 — #/T)’ is approaching 0 when ¢ is close to T when b is approaching 0,
(¢, v) also approaches 0. Michaleicz (1996) pointed out that this property causes the
non-uniform mutation operator to search uniformly the solution space initially (when 7 is small)

and locally at later stages. Note also that after applying the mutation operator to the solution,
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the feasibility-keeping procedure has to be implemented in the solution to maintain its

feasibility.

4.3 Population size, crossover rate, and mutation rate
Population size (popsize) is the number of members generated in each generation.

Crossover rate is the probability that a crossover operator applies to the chosen parents, and the

mutation rate is the probability that a mutation operator applies to the offspring. The

population size of 60, as used in all the examples in Michaleicz (1996), is also used in the
current application. Both crossover rate and mutation rate are set to be one after several trial
runs for the candidate problem.

5. Termination Criteria
The maximum number of generations (maxgen) is the most widely used termination

criterion for GAs. It is usually determined by trial-and-error. We found that our GA

converged within 2000 iterations in all the trial runs in the current application. Therefore,

maxgen is set to be 2000.

We are now in a position to present the procedure of applying our GA to the DFA.

Step 0: Let popsize = 60, maxgen = 2000, and ¢ = 0.

Step 1: Generate initial population with twelve-element solutions (vectors) V; (i =1, 2, ...,
popsize). For each solution, call nd to generate an asset allocation to each of its
elements and apply the feasibility-keeping procedure to satisfy the constraint.

Step 2: Calculate the fitness, f{V;), for each solution by conducting the DFA simulation with the
asset allocations given in V.

Step 3: Select two parent solutions based on their fitness. The selection probability of a
parent solution V; is p(i) = AV;)/ Totfit.

Step 4: Apply crossover operator, BLX-0.5, to the selected parent solutions.

Step 5: Apply the non-uniform mutation operator to the solution generated in Step 4, and apply

the feasibility-keeping procedure to maintain the feasibility of the solution.
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Step 6: If the total number of offspring solutions generated is equal to popsize, go to Step 7;

otherwise, go to Step 3.

Step 7: Lett=¢+ 1. Ift1is equal to maxgen, stop; otherwise go back to Step 2.

The optimization program is coded in C language and is executed using a Linux
platform (the OS is the RedHat AS 3.0). The CPU is Intel Itanium 21.5GHz. One of the
features of this optimization program is that the dynamics memory allocation is used for all the
necessary variables. Therefore, the required memory used is around 70MB when running the
program. The program is compiled using the Intel C/C++ compiler in the Linux System, yet
it can also be compiled and executed using the Microsoft Window XP platform with Visual
Studio C/C++ compiler. For 2000 iterations, this program took around 18,200 seconds to
finish on average.

IV. RESULTS
A. General description of the DFA’s simulation results

The simulated results of the financial markets are shown in Figures 2 to 4."®  We plot
the simulated 1% percentile, 25™ percentile, mean, 75™ percentile, and 99™ percentile values of
each year in these figures. The mean of the simulated short rates remains at the long-term
average value of 6%, with fifty percent of the simulated short rates falling within the range of
5.5%t0 6.5%. The 1 percentile simulated short rates are about 4.5% while the 99™
percentile values are around 7.7%. The means of the equity index and real estate index
display upward trends and the ranges of the simulated values widen as the simulation goes on,
which is consistent with the specified stochastic processes."

[Insert Figures 2 — 4 Here]

B. Results of a basic search method

'8 The simulation results of the insurance markets are not reported because the simulation is straightforward. The
loss ratio of each year is drawn from a normal distribution.

' We have also inspected the figures of the equity returns and real estate returns (not shown in the paper). The
25" percentile, mean, 75" percentile values of equity returns remain at -0.1%, 12%, 24% respectively across time.
The minima and maxima of equity returns exhibit some bumps around -60% and 80%, respectively. Real estate
returns display similar features with higher means and wider variation ranges.
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Before using the simulation optimization technique, we tried out a basic search method
in a single-period framework as follows. We list all possible asset allocations using the grid
size 0of 20%. Inserting these allocations into the DFA system and assuming that these
allocations are kept to the end of the simulation, we obtain the values of the objective function.
These values along with their associated average discounted surpluses as well as ruin
probabilities are shown in Table 1.

[Insert Table 1 Here]
,

Table 1 shows that the best asset allocation is & *(t) =[0 04 04 02]. Itresults

in an objective function value of 1,137,275,044 with an average discounted surplus of
$881,275,044 and a ruin probability of 1.36%. Although the zero-cash allocation looks odd,
it is reasonable because we did not consider liquidity in the model setting. ~Furthermore, new

premiums can cover the loss payments in most cases. The runner-up is

o(t) = [0.2 04 02 0.2], with an objective function value of 1,132,889,250, an average

discounted surplus of $876,889,250, and a ruin probability of 1.36%. The runner-up

allocation generates a little bit less expected surplus, which is reasonable because the return on

cash on average is smaller.””  Number three is 5(t)=[0.4 04 0 0.2]’ which results in

an objective function value of 1,097,049,222, an average discounted surplus of $873,049,222,
and a ruin probability of 1.44%. The higher insolvency probability is probably because cash

does not generate adequate returns. Number four is @(¢) = [0 02 0.6 0.2] This asset

allocation produces an objective function value of 1,022,434,859, an average discounted
surplus of $710,434,859, and a ruin probability of 1.22%. Although it generates the smallest

ruin probability among all the asset allocations, it produces an inferior average discounted

2 Remember that the return from cash is the one-year short rate. ~ Since the simulated yield curve is usually
upward-sloping, the one-year bond is smaller than longer-maturity bonds. The insolvency probability of the
runner-up is the same as the number-one choice implies that the risk of the bond portfolio is small.
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surplus compared to the top three allocations. The fifth winner is () = [0 04 02 0.4]'

which results in an objective function value of 1,017,769,551, an average discounted surplus of
$1,225,769,551, and a ruin probability of 2.52%. Allocating more assets to higher-risk
equities produces a significantly higher average surplus, but results in a higher ruin probability.

The ranking of the top five asset allocation looks reasonable. However, we do not
spot any pattern revealing between which two asset allocations the optimal allocation might be.
Weighting three variables to balance a higher average surplus with lower ruin probability is
rather difficult. Reducing the grid size of 20% is therefore the way to go if we do not have
any algorithm to search for the optimum. However, this reduction will increase the possible
asset allocation dramatically. When the grid size is 20%, the total number of asset allocations
s 56.  When the grid size is 10%, the number increases to 286. Five percent of grid size will
produce 1,771 combinations while one percent will result in 176,851 allocations. Therefore,
the basic search method is not feasible in finding the optimal asset allocation even though it is
intuitive and instructive.
C. Results of the genetic algorithm

Our GA produces a significantly better result than the basic search method. The value
of the objective function is 1,343,396,299 implying an 18% improvement over the above basic
search method. The GA results in a significantly higher average discounted surplus
($1,055,396,299 that is 20% higher than that of the winner in section B) and a lower ruin

probability (1.28%). The optimal asset allocation is as follows:

t 0 6 12 18
Cash 16.1906% 2.7821% 14.4054% 3.3340%
Stock 32.4451% 45.2235% 47.1426% 40.3112%
Bond 29.6427% 12.7891% 5.7029% 7.0734%
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Real Estate 21.7216% 39.2053% 32.7491% 49.2814%

We plotted the resulting 1% percentile, 25" percentile, mean, 75" percentile, and 99"
percentile surplus over time from the optimal asset allocation in Figure 5.
[Insert Figure 5 Here]

To secure the robustness of our application of GA to DFA, we tried two other sets of
random numbers and two other sets of parameters of the underlying risk models.”’  Using
different sets of random number results in small changes in the objective function value.**
The resulting values are 1,338,413,716 and 1,358,066,783. Since these values represent a
-0.37% and 1.09% difference respectively from the benchmark case described in the previous
one paragraph, our application is robust across random numbers.

The other two sets of parameters generate significantly different results. Alternative
parameter set 1 resulted in an objective function value of 1,445,571,649, an average discounted

surplus of $829,571,650, and a ruin probability of 0.46%. The optimal asset allocation is as

follows:
t 0 6 12 18
Cash 34.4349% 18.2585% 0.1492% 2.5802%
Stock 19.6516% 15.9641% 36.8198% 49.8485%
Bond 17.8915% 30.4849% 2.1546% 10.3742%
Real Estate 28.0221% 35.2925% 60.8764% 37.1971%

The features of this parameter set include fairly profitable but highly volatile financial as
well as insurance markets with a moderately positive correlation between the long-tail

insurance and financial markets. The position correlation possibly contributes to the lower

*! The alternative parameter sets are described in the appendix.

** The two alternative parameter sets are specified rather arbitrarily. We intentionally make them “unreasonable”
to see whether our GA can still find solutions under odd settings. The random number set used for these two
alternative parameter sets is the same as the one used in the benchmark case.
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ruin probability compared to that in the benchmark case and thus generates a higher objective
function value. The lower average discounted surplus might be as a result from the relatively
conservative investments during the first twelve years.

Alternative parameter set 2 results in an objective function value of 998,583,316, an
average discounted surplus of $198,583,316, and zero ruin probability. The optimal asset

allocation is as follows:

t 0 6 12 18
Cash 0.0010% 0.0010% 0.0010% 0.0183%
Stock 14.3156% 17.6433% 25.7770% 21.0308%
Bond 0.0010% 0.0013% 0.0053% 0.1233%
Real Estate 85.6824% 82.3544% 74.2167% 78.8276%

The features of alternative parameter set 2 include highly positive correlations between the
long-tail insurance and the financial markets, relatively safe insurance markets, a fairly
profitable but highly volatile stock market, and a low-return but high-risk bond market. The
allocations to bonds and cash are thus minimal. Most of the funds are allocated to real estate
with some funds to stocks for higher returns. The average discounted surplus under
parameter set 2 is the smallest among the three parameter sets because the discount rate for
surplus is the highest (45% vs. 3% and 15%). The lower returns in the financial markets
might also contribute to the smallest average discounted surplus. The zero insolvency
probability is probably due to the low risk in the insurance markets and the high correlation
between the financial and long-tail insurance markets. Finally, the significantly lower average
discounted surplus under parameter set 2 compared to the other two parameter sets results in
the smallest objective among the three parameter sets.

V. SUMMARIES AND CONCLUSIONS
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Managing an insurance company is more difficult than managing other types of
companies because an insurer faces not only asset risks but also liability risks. The DFA
system is a promising tool for the insurer. It takes full account of the static and dynamic
relations among asset variables and liability variables. The major output of a DFA system is
the distribution of an insurer’s future surplus that can be further used to compare alternative
asset allocations, business strategies, and reinsurance arrangements, among others. Insurance
regulators can use a DFA system to perform an early warning analysis as well as set up
minimal capital requirements.

The main drawback of the DFA system is the lack of an optimization mechanism.
Users can perform only comparative analysis with no way of knowing what the optimal
strategy is. Simulation optimization is receiving considerable interest in the field of
operations research and may be a nice complement to the DFA system. By incorporating
optimization features in a DFA system, the DFA system turns from a descriptive model into an
operational tool to solve various decision-making problems. The contribution of this paper is
coupling a DFA system with a simulation optimization technique and applying the combination
to the asset allocation problem of a property-casualty insurance company.

We first built up a simply DFA system in which an insurer underwrites both short- and
long-tail businesses and invest in four types of assets. Then we formulated the asset
allocation problem as a multi-period one instead of a single-period one. A multi-period asset
allocation is superior because the accumulation of a sequence of single-period optimal
decisions across periods may not be optimal for these periods taken as a whole. We also
considered the short-sale constraints faced by insurers when making investments. The
capability of solving a constrained multi-period problem illustrates the advantage of simulation
optimization, although we must keep in mind that the found solution as a result of simulation
optimization cannot be proved to be the optimum. The simulation optimization technique

used in this paper is a generic algorithm.
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We successfully incorporated a generic algorithm into a DFA system and performed a
search for the optimal asset allocation of a property-casualty insurer in this paper. The
resulting asset allocation was a significantly higher value of the objective function compared to
the allocation found from a basic search method. The optimal allocation produced a higher
average discounted surplus and a lower ruin probability. Using different sets of random
number generated similar values of objective function and demonstrated the robustness of our
coupling across random numbers. The optimal asset allocation is sensitive to the parameters
of financial and insurance market models, with the changes being consistent with the
differences in the parameters. Therefore, insurance companies that are using or are interested
in DFA should learn one of the simulation optimization techniques to equip their DFA systems
with optimization features.
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Table 1: The results of the basic research method

Real Value of the Average Ruin
Cash  Stock  Bond
Estate  Objective Function Discounted Surplus Probability

1 0 0 0 72,581,897 351,418,103 0.0306
0.8 0.2 0 0 551,978,871 463,978,871 0.0178
0.8 0 0.2 0 -46,112,487 353,887,513 0.0300
0.8 0 0 0.2 552,303,659 552,303,659 0.0200
0.6 0.4 0 0 637,421,327 605,421,327 0.0192
0.6 0.2 0.2 0 570,938,385 466,938,385 0.0174
0.6 0.2 0 0.2 971,157,610 699,157,610 0.0132
0.6 0 0.4 0 12,156,152 356,156,152 0.0286
0.6 0 0.2 0.2 587,409,029 555,409,029 0.0192
0.6 0 0 0.4 336,229,618 840,229,618 0.0326
0.4 0.6 0 0 280,468,735 776,468,735 0.0324
0.4 0.4 0.2 0 664,738,139 608,738,139 0.0186
0.4 0.4 0 0.2 1,097,049,222 873,049,222 0.0144
0.4 0.2 0.4 0 589,926,635 469,926,635 0.0170
0.4 0.2 0.2 0.2 975,076,921 703,076,921 0.0132
0.4 0.2 0 0.4 865,202,808 1,017,202,808 0.0238
0.4 0 0.6 0 70,408,056 358,408,056 0.0272
0.4 0 0.4 0.2 614,605,036 558,605,036 0.0186
0.4 0 0.2 0.4 379,816,127 843,816,127 0.0316
0.4 0 0 0.6 -1,437,343,176 1,234,656,824 0.0868
0.2 0.8 0 0 -979,818,603 988,181,397 0.0692
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0.2 0.6 0.2 0 331,768,042 779,768,042 0.0312
0.2 0.6 0 0.2 920,627,902 1,072,627,902 0.0238
0.2 0.4 0.4 0 707,867,321 611,867,321 0.0176
0.2 0.4 0.2 0.2 1,132,889,250 876,889,250 0.0136
0.2 0.4 0 0.4 996,985,281 1,220,985,281 0.0256
0.2 0.2 0.6 0 585,128,292 473,128,292 0.0172
0.2 0.2 0.4 0.2 1,002,693,284 706,693,284 0.0126
0.2 0.2 0.2 0.4 916,984,155 1,020,984,155 0.0226
0.2 0.2 0 0.6 -262,968,275 1,425,031,725 0.0622
0.2 0 0.8 0 120,775,989 360,775,989 0.0260
0.2 0 0.6 0.2 641,808,556 561,808,556 0.0180
0.2 0 0.4 0.4 423,394,768 847,394,768 0.0306
0.2 0 0.2 0.6 -1,377,259,696 1,238,740,304 0.0854
0.2 0 0 0.8 -4,699,438,942 1,764,561,058 0.1816
0 1 0 0 -3,230,097,737 1,249,902,263 0.1320
0 0.8 0.2 0 -881,219,802 990,780,198 0.0668
0 0.8 0 0.2 192,104,867 1,304,104,867 0.0478
0 0.6 0.4 0 351,750,776 783,750,776 0.0308
0 0.6 0.2 0.2 948,987,876 1,076,987,876 0.0232
0 0.6 0 0.4 608,774,850 1,456,774,850 0.0412
0 0.4 0.6 0 727,242,728 615,242,728 0.0172
0 0.4 0.4 0.2 1,137,275,044 881,275,044 0.0136
0 0.4 0.2 0.4 1,017,769,551 1,225,769,551 0.0252
0 0.4 0 0.6 -153,875,069 1,662,124,931 0.0654
0 0.2 0.8 0 604,121,085 476,121,085 0.0168
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Optimization Problems

Local Optimfzation

/\

Discrete Decision Space

Ranking and Selection
Multiple Comparison

Continuous Decision Space
Response Surface

Ordinal Optimization Mthodqlogy ‘
Random Search Finite Difference Estimates
Perturbation Analysis

Simplex/Complex Search
Single Factor Method
Hooke-Jeeves Pattern Search

Likelihood Ratio Estimates
Stochastic Approximation

Figure 1: Classification of optimization methodologies

Global Optimization

Evolutionary Algorithms

Tabu Search

Simulated Annealing
Bayesian/Sampling Algorithms
Gradient Surface Method
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Figure 2: The simulated short rate statistics along with time
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Figure 3: The simulated equity index statistics along with time
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Figure 4: The simulated real estate index statistics along with time
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Figure 5: The simulated surplus statistics under the optimal asset allocation
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Appendix: Alternative Parameters

A. Alternative Parameter Set 1

Model Parameters

Short Rate
Equity Index
Real Estate Index

Loss Ratio (Long)

Loss Ratio (Short)

m =20%
7y =10%
1 =30%

mean = 30%

mean = 20%

g =0.1
Og =35%
ORE =60%

GLR(L) =100%

O-LR(L) =80%

v =10%

The starting value of the short-term interest rate is 1%.

The correlation matrix #1s:

dWs dw, dWira) AW
dWs 1 0.60 0.60 0.60
dw, 0.60 1 0.60 0.60

dWira) 0.60 0.60 1 0.59
AW 0.60 0.60 0.59 1

The parameters of the representative insurer are set as follows: 1S(0) = 100, IP(0) = 110, B(0)

10

=7 Bw(l) = 50%, Exp(S) = 50%, G(L) = 2%, G(S) = 1%, and

dy 1 3 4 5 6 7 9 10
Dydv)% 10 10 10 10 10 10 10 10 10
Ds(dy) (%) 30 40 30

The discount rate for future surplus is assumed to be 15% while the discount rate for the

reserves is set at 1%.

one-third to seven-year bonds, and one-third to fifteen-year bonds.

B. Alternative Parameter Set 2

42

The new investments to bonds are allocated one-third to one-year bonds,




Model Parameters

Short Rate m =2% qg =0.7 v =6%
Equity Index g =20% og =50%
Real Estate Index u =10% ore = 13%

Loss Ratio (Long)

Loss Ratio (Short)

mean = 90%

mean = 95%

O-LR(L) =20%

O-LR(L) =10%

The starting value of the short-term interest rate is 12%.

The correlation matrix 7 is:

dWs dw, dWira) AW

dWs 1 0.99 0.99 0.99

dw, 0.99 1 0.99 0.99

dWira) 0.99 0.9 1 0.99
AW 0.99 0.99 0.99 1

The parameters of the representative insurer are set as follows: 1S(0) = 250, IP(0) = 1,100,

B(0) = % Exp(L) = 10%, Exp(S) = 5%, G(L) = 12%, G(S) = 20%, and

dy 1 2 3 4 5 6 7 8 9 10

Didy) (%) 0.1 01 03 05 1 3 5 10 30 50

Ds@y) %) 5 15 80

The discount rate for future surplus is assumed to be 45% while the discount rate for the

reserves is set at 10%. The new investments to bonds are all allocated seven-year bonds.
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I. INTRODUCTION

Asset allocation is essential to the solvency of a property-casualty insurance company.
A proper asset allocation generates adequate returns with non-excessive risk while provides
liquidity for claim payments. A poor allocation, on the other hand, may result in inadequate
returns, excessive risks, and/or illiquidity. A poor allocation is bad not only to shareholders
but also to customers since the inefficiency in investing premiums will ultimately result in an
undue insolvency probability of the serving insurer and/or high premium rates if the market is
imperfect. Therefore, asset allocation should be regarded as an integrated part of a
property-casualty insurer’s core businesses.

The literature offers a property-casualty insurer two major ways to tackle the asset
allocation problem. The first way follows the renowned mean-variance analysis of
Markowitz (1952). In its simplest form that ignores the underwritten businesses, this method
comes out of an efficient frontier representing the best portfolios in terms of the return-risk
tradeoff. Many software packages, even the Microsoft Excel, can generate the efficient
frontier instantly whenever the mean vector and covariance matrix of the asset returns are
given. A more comprehensive method is taking the liability side into consideration explicitly
in the mean-variance analysis (e.g., Sharpe, 1990; Craft, 2005; Chiu and L1, 2006). This
consideration is essential to the asset-liability management of life insurers, property-casualty
insurers, and pension funds. The mean-variance analysis, however, is subject to two
fundamental flaws: the single-period framework and the inappropriate utility function assumed
for the investor (Brennan, Schwartz, and Lagnado, 1997). The solution to a static portfolio
choice problem can be very different from the solution to a multi-period problem except under
restrictive conditions on utility functions and/or asset returns (Campbell, 2000).

The second way to construct optimal portfolios originated from Merton (1971; 1990).
The literature along this line formulates the asset allocation problem as a stochastic optimal

control problem and the solutions are characterized by the Hamilton-Jacobi-Bellman (HIB)
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partial differential equations. Solving the highly non-linear partial differential equations is,
however, rather difficult. Algebraic solutions can be obtained in very special cases only.
Furthermore, the number of state variables must be small since the size of the stochastic
optimal control problem grows exponentially with the number. Cox and Huang (1989) made
conceptual progress by showing that one can apply the martingale representation theory to
reduce the stochastic dynamic programming problem to a static problem in complete markets.
Few closed-form solutions have been available outside the simplest cases, however.
Furthermore, complex hedging terms are difficult to evaluate numerically. The empirical
applicability of the intertemporal portfolio choice method is therefore severely limited.

We in this paper take advantage of the recent progresses in the techniques of simulation
optimization to tackle the asset allocation problem faced by a property-casualty insurer in a
heuristic way. We formulate the asset allocation problem as a simulation optimization problem
(Tekin and Sabuncuoglu, 2004) in which the insurer’s future surplus and risk are generated by
a simulation model and a global optimization technique, multi-phase evolutionary strategies
(MPES), is used to search the optimal asset allocation. The model simulates the dynamics of a
property-casualty insurer that underwrites both short-tail and long-tail line of businesses and
invests in five types of risky assets. The simulation generates 10,000 paths of 25-year changes
in which the insurer re-allocate its assets every five years with no-short-sale constraints, which
makes our problem a multi-period one. The objective function of the insurer involves not only
average discounted future surplus but also insolvency probabilities and thus is non-linear.

To examine the potential gain of using simulation optimization, we compare our results
with those generated by the commonly used ad hoc multi-period strategies, the so-called
re-balancing methods. The re-balancing can be done periodically (called periodical
re-balancing in the following) or triggered by the deviations of the asset proportions from the
first-period allocations that exceed a pre-specified interval (called interval re-balancing in the

following). The first-period asset allocation is usually obtained by trying all possible
46



combinations of allocations in which the allocations are restricted to be multiples of certain
proportions like 10% or 20% (we call this method as grid search in the following). We also
employ MPES to produce the first-period asset allocation for the re-balancing methods to see
how much improvement MPES can be over the grid search method. We set up two comparison
criteria: the value of the objective function and the position of the generated “efficient
frontier.” The comparison based on the objective function’s value is intuitive, but any specific
objective function represents only one combination of expected return and risk. We thus extend
our comparisons to a series of return-risk pairs to see the relative positions of the resulted
efficient frontier.

Our results show that the periodical re-allocation using MPES produces significant
improvements over other strategies. The MPES re-allocation strategy results in the highest
value of the objective function. It outperforms the interval re-balancing using grid search to
determine the first-period asset allocation by 16.49%. The improvements of MPES
re-allocation over grid-search periodical re-balancing, MPES periodical re-balancing, and
MPES interval re-balancing are 16.16%, 10.04%, and 8.97%. With regard to the relative
positions of the efficient frontier, the MPES re-allocation strategy remains to be the best,
followed by the MPES interval re-balancing, MPES periodical re-balancing, grid-search
interval rebalancing, and grid-search periodical rebalancing strategies. In short, the reallocation
using MPES is the best and all the strategies using MPES perform better than the strategies
using the grid search method.

The rest of this paper is organized as follows. Section 2 describes our simulation model,
including the setting of the financial markets and insurance markets. Section 3 depicts the
dynamics of the representative insurer’s financial positions. The investment strategies used for
comparisons are described in Section 4, and the optimization problem of the insurer is
formulated in Section 5. In Section 6 we explain the proposed searching technique MPES in

detail. Comparisons are displayed in Section 7. Five investment strategies are evaluated by
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the values of the objective function and the efficient frontiers that they can generate. Section 8
contains summaries and conclusions.
I1. STOCHASTIC INVESTMENT AND INSURANCE MARKETS

In this section, we set up the stochastic models of the investment and insurance markets
used to simulate asset prices and underwriting losses.
A. Investment Markets

The insurer could invest five different types of assets. These assets include stocks,
bonds, three types of alternative investments that are individual with “high-return and
high-risk”, “low- return and high-risk”” and “low-return and low-risk”. The bonds could be
separated as one-year maturity, two-year maturity... and fifteen-year maturity, with total fifteen

kinds of short and long maturity bonds.

The entire simulation horizon is 7, , and all the models would be built as the dynamics
form at a certain period t (¢# < 7,,). All the volatilities of the asset models yield Wiener
processes, so we use dW to present the differential of those processes. The correlations

among asset price changes and losses claims of insurance are denoted as R.

AW =[dW, dWs dW . dW, dW,. dW, dWw, ], where

Ji 1 )i th

7 : short rate

St: Stock

AI"™ : high-return and high-risk alternative investment
AI" : low-return and low-risk alternative investment
AI" : low-return and high-risk alternative investment
Ir': loss ratio of long-tail business

Ir’ : loss ratio of short long-tail business

1. Bond Markets
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The variation of the short rate usually affects both bond market and stock market. To

simulate the variation of the short rate, we set up the CIR (Cox, Ingersoll, and Ross, 1985)
model as short rate model. That is dr, =b(a—rt)dt+5',.\/ZdW, where a is long-term
average of the short rate and 0<b <1 denotes the mean reversion rate. The volatility of the
evolving processis &, =[v 0 0 0 0 0 O0].

In the bond market, we also adopted CIR model and the price of the bond is mapping

from the short rate. The price of a default-free zero-coupon bond at time ¢ for the delivery of $1

P Bad) = (T e "
2ba
i(b-*-}/) o2
2(e” =1 :
, where B(x)= (e” -1 > Ay (x) 2pe s
(7 +b)(e” —1)+2y (b+7)(e" —1)+2y

and y=+/b>+2v°.
2. Stock Markets

We assumed that the dynamics of stock index follows the interest-rate-adjusted geometric

Brownian motion as below. The dSt, denotes the change in the stock market index within a

time period ¢. The ¢, denotes the risk premium and the volatility of the index return

G,=[0 04 0 0 0 0 0].

st _ (r, + 0 )dt + &5, dW

t

3. Alternative Investment Markets: High-return and High-risk
The adjustment of A/"index moves according to geometric Brownian motion. The
primary feature of this model is high risk and high return, hence its o and x is relative high

to other alternative investment models. The index of this asset model is listed as follows:
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dAr™

m:ﬂ41h”dt+5- dW

Alhh

, Where u o is the expected return of A/ " and the volatility is indicated as

&,u=[0 0 c, 00 0 0]

A[hlt
4. Alternative Investment Markets: Low-return and Low-risk
Changes of this asset price also follow geometric Brownian motion. The parameters o

and u are set purposely to be relatively low to other alternative investment models. The

associated process is as follows:

dAT" (£)

A1 (1) = Hypdt+ 6 dW

where u o is the expected return of high-return and high-risk alternative investment and the

volatility is indicatedas &,, =[0 0 0 o 0 0 O0].

A[[[ AI”

5. Alternative Investment Markets: Low-return and High-risk
The motivation of A" index still complies with geometric Brownian motion. This kind

of investment usually brings high risk and low return and hence o is relative high but x is

relative low to the entire alternative investment models. One characteristic of the model is with
negative correlation among the assets. It is a hedging asset and could be used to regulate the

high-risk assets. The model of this assets index is depicted as:

dAI" (1)

L = dw
AI™ (1)

/UAIM dt + 6/411/1

, where 4, is the expected return of A/"™ and the volatility is

&,n=[0 000 o, 0 0]

II/r
B. Insurance Markets

The insurer has a long-tail business and a short-tail business here. We particularly
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considered two issues about the timing and the amount of claim payments in the long-tail and
short-tail businesses.

The timing of claim payments is also called claims tail. In some insurance contracts, a
considerable proportion of claim payments are paid slowly because of the negotiations between
the insurer and their customers. The lag between the time that coverage is sold and the time
that claims are paid is the called claims tail. “Long-tailed” business such as liability and
workers’ compensation insurance in which most claims are paid in several years after the

coverage period. “Short-tailed” business likes property insurance coverage and coverage for

employee medical costs under group health insurance contracts in which large proportion of
claim are paid during the year of coverage or the year after. (Harrington and Niehaus, 1999).
We call the span of claim payments as the loss development periods in this study.

Whether long-tail or short-tail business, total claim amount of every new coming
business is different from each other because the uncertainty of loss ratio always associates
with the insurance business. We need to construct the loss ratio models for the amount of the
payment based on this uncertain feature. The following models are related to the timing and the
amount of claim payments for the long-tail and short-tail lines of businesses.

1. Long-Tail Businesses

The loss ratio of long-tail business claim payments at each period is simulated using

normal distributions with positive parameters (4 ,,o,, ). The loss development will vary with
different proportions d; in different period. We assumed the development periods of the

long-tail business as ¢ and it has to satisfy Zl’;l d =1 where 0<d/ <1.
2. Short-Tail Businesses
The variation of loss development across periods in this market is following normal

distributions with parameters (1, s,0,s). In addition, the loss development of each period is

alterable with different proportions d;. We assumed the development periods of short-tail
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business is #* and it has to satisfy >, d; =1 where 0<d; <1.
I11. THE DYNAMICS OF THE INSURER’S OPERATIONS
The insurance company has two principle operations about insurance business and
assets investment proceeding over the time horizon 7, (from ¢=0 to =7, —1, see the

time axis in Figure 1). These operations that affect the positions of the assets usually occur at
the beginning and the end of period ¢. At the beginning of the period, three sub operations
include receive the premiums, list reserves and increase investable funds and allocate

investable funds (the rules of allocation strategies would be discussed in the next section).

Once it comes to the end of the period, three sub operations include recalculate the asset values,
claims realized and deduct claim payments from assets. Therefore, the positions of the asset
would be changed again after paying for the losses. All above activities would be separated and
described as insurance business and asset investments. In the figure we use italic text to denote
the insurance activities of the insurance businesses and use bold text to denote the investment
activities of the assets. We describe these two kinds of activities more detail in the following

two sections.

at the beginning of period ¢ at the end of period ¢
| | | [
| | T >
0 - t t+1 T, -1
e the premiums received e mark-to-the markets for assets
e reserves and investable funds e claims realized
e allocate investable funds e deduct claim payments from assets

Figure 1: The business and investment activities of company operations in period ¢ over the
simulated horizon
A. Insurance Activities

The operations of insurance business generally consist (1) receive the premiums (2)
calculate reserves and list it on the balance sheet and increase investable funds and (3) claims

realized. These operations have some relationships on the procedures. First, the company
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receives insurance premiums from their customers and then lists the amount of premiums as
the reserve in the liability. At the same time, the cash from premium collective could become
the investment funds to be put into the financial markets that would be listed as the assets of
the company. All claims are usually paid at the end of the year. As the company paid out the
claims, the reserve of liability will decrease. We will describe these activities more elaborately
in the following subsections.

1. Premiums Received

We assumed that the business revenue of insurer grows with a constant rate. Under the

constant growing condition, premium incomes of this period will increase (1+g') or

(I+g’) based on the income of last period. Therefore we can express the total insurance

premium income of each period as:
Prm, =Prm,_ *A_ *(1+g")+Prm,_ *(1-1,_)*(1+g"), where

Prm, : total premium income in period ¢

A, a proportion of long-tail premium income to total insurance premium income

g'(g"): a constant, long-tail (short-tail) business growing rate in each period and 0< g’ <1
(0<g’<1).
2. Reserves and Investable Funds

During each period, insurer deducts a given expenses from the business revenues and
invests all of them into the financial markets afterwards. The net premium income, the reserve

or the investment funds, could be depicted as follows.

Fund, =Reserve, =Prm, * A, , *(1—= f')+Prm, *(1=1,.,)*(1 - f*), where
£'(f*): a constant, a ratio of related expense for the long-tail business (short-tail business)

3. Claims Realized
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Both of the insurance businesses receive the premium income at the beginning of each
period, and pay the loss for customers at the end of a period. We should consider the old
businesses were accepted in the prior period but their losses would be paid afterwards when we
calculate the claim payment of this period. This would lead to that the claim the insurer has to
pay includes the new coming business and prior business would be paid by the part of this

period. Therefore, the total losses paid at the end of period ¢ is

! t
Loss, = SPrm! xlr! xd!,,,+ Y Prm xIr’ xd;

t—i+l

i=max(Li—'+1) i=max(1e—t* +1) , Where

Ir! (I ) : loss ratio of long-tail (short-tail) business in period i.
B. Investment Activities

We simulate the changes in the asset positions during each period at three time points,
including the beginning of this period, before and after claims realized at the end of this period.
At the beginning of period t, the insurer allocates the investable funds. At the end of period t,
the insurer mark-to-the markets for the asset before claims realized and it deducts the claim
payments from the assets. The asset positions undulate continually at these three time points in
all simulation periods. To understand the performance of the simulation periods, we calculate

the profit or the loss at the end of every period ¢ of the whole horizon 7, . Whether profit or

loss happens, the shareholders absorb them all. Nevertheless, while the company cannot afford
the losses, the company would be insolvent and forced to stop simulating the path. In this
section, we adopted the balance sheet to express the changes of all asset positions.

Notations

t: a certain period ¢=0,---,7, —1

¢ : a set of periods for making asset allocation strategies, where 0<¢ <7, -1 and

el
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a: the time after claim realized

b: the time before claim realized
x,: asset class i , where i=1,---,5 corresponding to St,Bd, AI"", AI" and AI"
k : k-th type of bond, the bond is one-year maturity bond when k£ =1 and so on

k, : number of the types of bonds
bp, : allocation of the k-year maturity bond to the all bonds
q.., : quantity of asset class x; in period ¢
4.« - quantity of k-th type of asset x; in period ¢
D.., - unit price of asset class x; in period ¢
D:., x - unit price of k-th type of asset x; in period ¢
v, : value of the asset class x; in period ¢
Cptl : capital in the initial period as the company established
0, . : allocation of asset class x; in period ¢
9;” : new allocation of asset class x; in period ¢
Reserve, : reserve for the claim in period ¢
A, : total asset value in period ¢
L, : total liability in period ¢
E, : total equity in period ¢
1. At the Beginning of Period t — Allocate Investable Funds
The company receives the premium income at the beginning of every period. It regards
the cash from the reserve as the new increased investment funds and allocates the funds into

each asset according to the investment strategies (asset allocation strategies). Most of the assets

will proportionally increase in this point.
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On the asset side, there are two different situations about asset allocation. In the
situation 1, the total fund has additional capital from the shareholders in the first year of the
company. Otherwise we just keep ourselves staying in the situation 2. The situation 2 also has
two cases about the time whether making the strategies or not.

Situation 1: £=0
The quantity of each asset we will buy as following.
Go.., = (Cptl + Fund,)x 6, / p,.,. i=13,4,5
Gox,x =(Cptl + Fund, )% 6, xbp, I F, .,
Situation 2: t=2,---,T, —1
Situation 2.1: t=¢
qt,x; = qta—l,x[ + Fundt X 6[,):,- /pt,x,» = 1735475
qt,xz,k = qta—l,xz,k + Fundt X et,xz X bpk /pt,xzvk
Situation 2.2: otherwise,
qt,x,- = (Ata—l + Fundt) X 9,‘%. /pt,x,- l = 1:374:5

G5 = (AL + Fund,) x 9,'” x bp, /pt,xzyk

5
At = gvt,x; = qt,x; x pl,xi
On the liability side, the value increases due to the new insurance businesses.
L, =L, ,+Reserve,
Since the total asset value equals the sum of liability and surplus, we can get the surplus form

the following formulation.

2. At the End of Period t — Mark-to-the Markets for Assets

At the end of the period, the company has to pay for the loss of the customers. However
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the loss would be paid by each asset according to the proportion of each asset present value to
the total assets present value. We have to complete mark to the markets for assets before the
claims realized because of the price fluctuations in the financial markets. Regarding the bonds,
the rest years of maturity of each type would be shorten at this time. For simplification, we use
the one-year maturity bond, which would become $1 face value on the due day to purchase the

new fifteen-year maturity bond. In the following formulations, the superscript b means the
special time before claim realized. For example, A, denotes the total asset value before claim

realized at the time 7.
On the asset side, the prices of assets are changed at the end of period ¢. The asset value

would be recalculated with price p,,,.

b

tx;

M

b
A =XV

i=1

4 k, '
=241y, X Prary, + kZ (Diy o X Prsty o) F Qry
inl 2

On the liability side, the value is still the same.
L=L,.
We then deduct the liability from the asset value to get the equity value.
S; =4 - L,
3. At the End of Period # — Deduct Claim Payments from Assets
Insurance company pays the claims by selling the assets. When the insurer sells the
assets, each asset class would be sold the amount of loss with proportion of this asset value to
the total asset value. We could see the positions of assets are already changed after claim
realized. In the following formulations, the superscript a means the special time after claim

realized. For example, A, denotes the total asset value after claim realized at the time 7.

On the asset side, the asset value would decrease because of paying for the claim loss.
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5
a _ a
At - zvl,x,-
i=1

k,
b b b - b b b
= (vt,x,» _LOSSt XV x, /At )+ kzl(vt,xz,k - LOSSt XV ok /Az )

a _ ..a
qt,x[ _vt,x; /pt+l,x;
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On the liability side, the original preparation of reserve for the insurance loss payments
at the beginning of period # would decrease because the claim realized.
L' =L’ — Loss,.
The equity value of shareholders is again obtained by deducting the liability from the asset:
S/ =4 -L;.
IV. ASSET ALLOCATION STRATEGIES
The company must make proper proportion adjustment for the assets at the certain time
to gain the greatest expected wealth in such uncertain investment markets. The principles of
asset allocation strategies contain the adjusting rules and the adjusting ways. In this study we
divided the adjusting rules as periodical and interval. As to the adjusting ways, we distinguish
them into reallocation and rebalance. The following are brief accountings:

A. Adjusting Rules

1. Periodical Adjustment

The length of time for adjusting the asset allocation is fixed. For example, the simulated
horizon is a total of twenty-five years and we readjust the proportions every 5 years.
2. Interval Adjustment

The adjusting timing is determined by if the proportion of any asset exceeds the
predefined limitation. We assumed the limitation of increasing or decreasing degrees is allowed
below »” (0<7"” <1). Once the amount of asset value is changed beyond " ofits
proportion @, suggested in the investment strategy, the company must undertake new
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adjustments. It means that the changeable range of the asset proportion in each period is
permitted by [0, —7",0,, +7"].
B. Adjusting Methods
1. Rebalancing
When the company encounters the time for making new strategies, every asset adjusts

the present proportion according the old proportion in the first strategy. The investment

portfolios 0 are always still the same, whatever how many times the insurer has made the
strategies.
2. Reallocation
The company has to create new allocations when it encounters the time for making
strategies. This new allocations would adjust the assets to the new positions.
V. OPTIMIZATION AND EXPERIMENT DESIGN
We used two ways to evaluate the performance of alternative investment strategies. One
is efficient frontier and the other is utility function. The prior can show us how the surplus
changes across risk levels and the posterior directly display a single value, which integrates
both the surplus and the risk.
A. Efficient Frontier
The main purpose that we employed the efficient frontier is to understand the performance
of different investment strategies with an overview. We use an efficient frontier curve to
express the entire performance of a specific strategy, because efficient frontier curve is made
up of points representing several portfolios with differing levels of risk and return. When the
position of the cure is located at more upper left, it signifies that the performance of these
portfolios on this curve is better.
The expect return is the average discounted surplus as below. To calculate this item, we

calculate the average of discounted surplus of all periods for each path and than average the
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total results of all ¢ simulated paths. For simplicity, we set and observe ten points under the
specific and different risk levels 7, as 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.07,

and 0.1 during using the MPES™. We set the greatest observed risk is at 0.1 because we believe

this level still stays in the general tolerant range.

()
Max S LANEIC0)
4
s.t. ruin probability < r,
20, =1

0, =20

L =
B. Utility Function

In contrast to the efficient frontier, the utility function just produce only one point (value).
We usually use the utility function of the company as the objective function. The utility
function has two parts that express the return and tolerable ruin probability at the same time. In
this study, the first term is average discounted surplus (see below). The second term is a

punished item to denote that the ruin probability prob . of the simulated result has outrun

the tolerable ruin probability 7. This deduction (punishment) of the utility is implying the
company’s dissatisfaction. The constant &k is chosen by the company to properly reflect the

importance of excessive ruin probability.

> For the search technique ES, we can easily set the risk level as our constraint to search the return under this
specific risk. However, the grid search method does not allow us to specify the risks.

60



Max —max(k(prob,,,, —7),0)
o(1) ®
5
s.t. 20, =1
i=1
0, >0

1x;

The entire utility function can convey the practical situation. That is when the company
pursues the high profit and naturally lifts up the risk and return, it will result in the higher ruin
probability and force the value of the utility lower. However, when the company avoids the

high ruin probability of the risky assets, it usually gets lower returns. We use MPES to find the

appropriate investment portfolio 0 to make the utility reach the maximum. This means that
the company can gain the greatest profit and lower the ruin probability at the same time.
C. Experiment Design

The experiments simulated investment of the insurance company for twenty-five years
and the number of simulated paths is 10,000, which are the various situations of the return and
loss of the markets. We preceded two main parts of experiments to compare the differences
between the all sorts of searching methods and adjustment rules (see Table 1). The first one
uses the grid search method to solve the problems and the other uses MPES. The parameters of

the two main experiments are identical and the detail settings are listed in the appendix.

Table 1: Experiment design for the asset allocation strategies and search methods

Asset Allocation Strategies

Search Method Adjusting Rule Adjusting Method Simplified Form
Grid search method periodical rebalance Grid-PR
interval rebalance Grid-IR
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MPES periodical rebalance MPES-PR
interval rebalance MPES-IR

periodical reallocation MPES-Reallocation

We used the grid search method as the benchmark to compare with the MPES because
people usually adopt it to solve the searching problems when they do not have efficient
methods. The grid search method used the combination of some specific figures to determine
the allocation of investment portfolio. The number of the asset classes is five and each figure in
the combination varies by 20%. All asset allocations are non-negative and sum to one, so it will
produce 126 combinations®*. Some examples of the combinations are such as (1, 0, 0, 0, 0),
(0.8,0.2,0,0,0),(0.2,0.6, 0,0, 0.2), etc.

V1. MULTI-PHASE EVOLUTION STRATEGIES

In this section, we introduce the proposed evolutionary strategies algorithm,
multi-phase evolutionary strategies (MPES). We will first introduce a basic evolutionary
strategies algorithm and its application to generate the optimal asset allocation for the
simulation models. Then, we will discuss the ideas and the procedure of MPES and explain
how MPES is able to improve the performance of the basic evolutionary strategies.
Furthermore, we will discuss the performance of MPES for five complicated benchmark
functions..

A. Evolution Strategies
The evolution strategies algorithm (ES) has been presented since 1970s (Rechenberg,
1973, Schwefel, 1981). It is a randomized search method that incorporates the nature of

evolution into its processes. Evolutionary algorithms, unlike traditional optimization

** The number of combinations is 3 x +5+1=126 (The first addition term is the sum of

42 x—
3 21211
permutations and combination in [0.8, 0.2, 0, 0, 0], [0.4, 0.2, 0.2, 0.2, 0], and [0.4, 0.4, 0.2, 0, 0]. The second
addition term is the result from [0.6, 0.2, 0.2, 0, 0] and [0.4, 0.4, 0.2, 0, O]. The last two terms are the results from
[1,0,0,0,0,0]and [0.2,0.2,0.2,0.2,0.2].)
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techniques, use “population” instead of single points to search and solve complex optimization
problems. The population for the initial generation is usually generated randomly. From the
members (parents) in the population, genetic operators are then used to produce offspring, and
the favorable offspring, corresponding to the “survival of the fittest theory” in the biological
world, are chosen to constitute the population for the next generation. The process continues
for generations until a termination criterion is satistied and a superior solution is acquired. A
concise pseudo code of a basic evolution strategies algorithm, denoted as (u,A) ES, is presented
as follows, where p is the number of parents in the current population and A is the number of
offspring produced by the parents for the next generation, and A is about seven times of p.:

(w,A) ES Pseudo Code:

1. Initialize u parents

2. For generation :=1 to n do

3. Recombination & Mutation from p parents to produce A offspring
4. Parent selection: Evaluate /. offspring and choose the best u offspring to be new parent
5. End Do

6.  Output the first best solution.

A more detailed description of the steps of the (u,A) ES algorithm is presented below (Nissen
and Biethahn, 1995, and Back, 1996).
Step 1: Generate a population for the initial generation.

A population of p solutions (members) is generated. Each solution is usually represented
by a row vector consisting of two parts. The elements in the first part are the values of the
decision variables (x;) considered in a given application, and the elements in the second part are
the mutation step sizes (oj) corresponding to the decision variables in the first part. The
decision variables in our application are dependent on the asset allocation strategies used. If

the periodical reallocation strategy is used, the decision variables will be the proportions of the
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asset allocations for the five types of risky asset in five periods, so there will be twenty-five
decision variables. We randomly generate the proportions of the five asset allocations for
each period from a uniform distribution with a range of [0, 1]. Note that the sum of the
proportions of the five asset allocations in a period has to be equal to one, so the proportions
for each period are simply normalized by summing up the proportions and dividing each
proportion by the sum. Additionally, in each solution, all the mutation step sizes are set to 3.0

(Back, 1996).

Step 2: Apply recombination and mutation to the parents to produce A offspring.

A pair of parents, A and B, is randomly chosen from the population, and recombination and
mutation are applied to A and B to produce a child C. Discrete recombination is used to
determine the first part, the decision variable values of child C. The value of each decision
variable in C is randomly and equally chosen from the value of the same variable in A and B.
Intermediate recombination is used to determine the second part, the mutation step sizes of C.
The j-th mutation step size in C is simply determined by the average of the j-th mutation step
size in A and B (6;(C) = 0.5 (6;(A) +cij(B)). The generated child C is then mutated by first
modifying its mutation step sizes and then adding these step sizes to mutate the corresponding
decision variables. Each mutation step size o; (C) is modified by the following equation:

Gj’ (C) =6;(C) exp(t N(0,1) + 1 N;(0,1)), where N(0,1) is a standard-normally distributed
random variable, and the values of T and T are set to 1.0 (Back, 1996) . And, each decision
variable x; is mutated by the following equation:

x! (C)=x,; (C)+N;(0,5{(C)).

When child C is generated, the simple normalization method is applied to the proportions of
the asset allocations of each period to maintain its feasibility. The reproduction procedure is

repeated until A offspring are produced.
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Step 3: Evaluate the A offspring and choose the best p offspring to constitute the population for
the next generation.
The decision variables of a child are submitted to the simulation model, and the

computational result is the fitness value of the child.

Step 4: Check the termination criterion. If the termination criterion is satisfied, stop; otherwise
go to Step 2.

The most commonly used termination criterion is to set the fix generation for the entire
process. This criterion is also used in this research.
B. Multi-Phase Evolution Strategies

Intensification and diversification are two principles in developing an optimization
method. When we applied the basic ES algorithm to solve five benchmark functions, it was
found that the algorithm usually converged within 100 iterations; the converged solutions were
affected by randomly generated initial solutions, and the converged solutions were not always
the optimal solutions. This may conclude that the basic ES algorithm was able to intensively
converge to a local optimal solution; however, it was not able to diversely search large enough
solution space. The idea behind the multi-phase evolution strategies is to improve the
diversification capability of the basic ES algorithm. The basic ES algorithm is implemented
m times (phases); however, it is not implemented from scratch. The best ¢ solutions in the
last generation in a phase will automatically become the member in the initial generation in the
next phase, and the other members will be generated randomly. This design will not only
improve the diversification capability of the ES algorithm, but also guide the search to good
solution regions. The pseudo code of the multi-phase ES algorithm is presented below.
Multi-Phase ES Pseudo Code:

1. For multi-phase=1 to m do
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2. if multi-phase =1

3. Initialize y parents

4. else

5. Reset all parameters to initial conditions

6. parents = best ¢ solutions from previous phase + randomly generated (u-¢) solutions
7. For generation :=1 to gen do

8. Recombination & Mutation from u parents to produce A offspring

9. Evaluate A offspring and save the best ¢ offspring

10.  End Do

11. EndDo

12. Output the first best solution.
C. Evaluation of the Multi-Phase Evolution Strategies Algorithm

Since there are 25 independent variables in some of our asset allocation models, to
ensure the performance of MPES for the candidate models, five non-linear and multi-modal
functions, each with 50 variables, are used to evaluate the effectiveness of the algorithm. These
benchmark functions are selected from Schwefel (1981), Yao and Liu (1996) and Vesterstrom
and Thomsen (2004). Table 2 presents these benchmark functions, and Figure 3 to Figure 4
display the geometric figures of the last three benchmark functions with two variables. From
these figures, one can see that there are lots of local optima and un-differentiable areas. It is
hard to image how complicated these figures will become if 50 variables are considered. We
applied MPES to each of the benchmark functions with five different randomly generated
initial populations. Each decision variable in a solution in an initial population was randomly
generated from a uniform distribution with a range constraining the variable in the benchmark
functions. For instance, the constraints for the variables in the first benchmark function are

-10< x, <10, so the range for generating the decision variables was [-10, 10]. The
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parameters of MPES were determined by trial-and error in solving these five functions. The
population size () was set to be ten times of the decision variables considered in a solution (p
= n x 10); the number of offspring (1) was set to be seven time of p. Since, as mentioned
above, the basic ES algorithm converged within 100 generations when applied to the
benchmark functions, we set the number of generations (gen) for convergence in every phase
to be 100. Also, both of the number of phases, m, and the number of best solutions retained
for the next phase, ¢, were set to be five. Table 3 presents the computational results. The
results show that, for each benchmark function, since the standard deviation approaches 0.0,
MPES always converged to the optimal solution regardless of the initial populations.
Therefore, we are confident that MPES is an effective tool for generating the optimal asset
allocation for the simulation models.

Table 2: High dimension benchmark functions

Function list (n=50) Constrains Minimal value Remark
. ol n-1 - Schwefel's problem
fl(x)=2|xi|+Hxi ~10< x;, 10 £(0)=0
i=0 i=0 (2.22)
a1 £:(p)=0
f2(x):2( xl_+E ) -100 < x; <100 Step function
i=0 -05<p<05
. on-l 420.97) = Schewefel’s
£,(x) = —x,sin(y|x) ~500 < x, < 500 i )
i=0 220949 14 problem (2.26)
= 512< x. <512 . Rastrigin’s
fi(x) = (x} —10cos(27x,) +10) , £,(0)=0
i=0 Function
. n-1
f5(x) =—20exp(—0.2, [L > x?) -
i=0 —
-32<x, <32 f5(0)=0 Ackley’s Function
n—1
exp(+ Z cos(27x,))+20+e
i=0
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Table 3: Computational results of MPES for the five benchmark functions

Mean Best Value Std Dev

A 2.80914e-21 1.15020064249678e-21

f 1.0e-26 1.0e-26
fy -20949.1443636216 0.0
J4 1.0e-26 1.0e-26

s 8.9706020390e-15 1.9459014222e-15

80
600~ .o
400

200

200~}

|
400~
00 .

800

so

400
-500 -500

-400

Figure 2: Two dimensional sketch of f;.
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Figure 3: Two dimensional sketch of /5.

Figure 4: Two dimensional sketch of f5.
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VII. RESULTS ANALYSES
To analyze the performance and asset allocation under different investment strategies
and search methods, we describe them in three aspects. First, we use the efficient frontier to
compare the performance with an overview, the comparisons include (1) two rebalance
strategies with the grid search method (Grid-PR and Grid-IR), (2) one reallocation and two
rebalance strategies with MPES (MPES-PR, MPES-IR and MPES-Reallocation), and (3) all
the strategies and search methods. Second, for further analysis, we particularly sought the
single point of the optimized objective value that considered both of the return and risk
together. We are not only interested in the improvement on the objective values of the
reallocation with MPES, but also the asset allocation of all methods. Finally, we still examine
the asset allocation but especially their changes across risk levels.
A. Analyses on Efficient Frontier
The result shows the performance of the interval rebalance is better than that of the
periodical rebalance during using the grid search method (see Figure 5). The lower points of
the efficient frontier of periodical rebalance are quite closed to that of the interval rebalance
until arriving at the risk 0.04. This tells us that the return and the risk of the two methods are
very similar when the company tends toward conservative. When the company could tolerant

higher risk, the performance of interval rebalance is more significant.
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Figure 5: The efficient frontiers of all strategies using grid search method

The results of the MPES experiments showed that the reallocation strategy is better than
other two types of rebalance strategies (see Figure 6). The performance of the MPES-IR seems
a little higher than the MPES-PR’s. In this figure we are interested in the performance
improvement of the reallocation. We could understand it through the improvement of the return
or of the risk. Let us see the part of the return first. There are ten different gaps between the
returns of MPES-PR and MPES-Reallocation at ten risk levels. The improvements (gaps) of
the ten points of MPES-Reallocation are 13.04%, 10.04%, 9.74%, 8.70%, 7.39%, 5.82%,
4.82%, 4.49%, 4.35% and 4.24%. The average is 7.26%. The gaps between MPES-IR and
MPES-Reallocation are smaller and therefore the performance of MPES-IR is better than
MPES-PR’s. The gaps are 9.63%, 8.97%, 8.3%, 7.21%, 6.35%, 5.15%, 4.59%, 4.25%, 4% and
4.4% and the average is 6.28%. Corresponding to the improvement of the return, we also find
any two points on the separate curves with similar return level but a gap of risk between them.
We found five pairs of points and each pair has the similar return that the difference can be
within 1.5%. Under almost the same return level, the risk can averagely decrease 0.02 when the
company replaces MPES-PR method with MPES-Reallocation. We will omit the comparison

between MPES-IR and MPES-Reallocation because the results are almost the same as above.
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Figure 6: The efficient frontiers of all strategies using MPES
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Now let us put all the curves together and see the relationship of all performance for all
methods and strategies (see Figure 7). We found three interesting things. First, the figure shows
the results from the best to the worst as ES-Reallocation, MPES-IR, MPES-PR, Grid-IR and
Grid-PR. Therefore the MPES-Reallocation has the best result in all methods and strategies.
Second, whether the periodical rebalance or the interval rebalance method, MPES has better
results than the grid search method. Finally, we also compare the difference of the performance
between the grid search method and the MPES. Comparing to the MPES-Reallocation, the risk
of the Grid-IR averagely increases 0.037 under the similar returns and the Grid-PR averagely

increase 0.053.
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Figure 7: The efficient frontiers of all strategies and methods
B. Analyses on Utilities
The MPES-Reallocation still got the best result when it sought the value of objective
function. It has improvement of 16.16%, 16.49%, 10.04% and 8.97% as it compares with the
Grid-PR, Grid-IR, MPES-PR and MPES-IR (see Table 4). Under the same periodical rebalance,

the objective value of the MPES is better then the grid search method by 5.56%. Similarly,
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under the same interval rebalance, the objective value of the MPES is better then the grid
search method by 6.90%.

The MPES-Reallocation is the only one, which has different asset allocation across the
strategy times. We can see the stocks are the largest investment item and the
high-risk-high-return asset is the second largest. Bonds get zero allocation, on the other hand.
During these strategy times, the largest change between the highest and lowest asset allocation

happened in AI" and the second one is in A7™. The difference is that the proportion of

AI™ insists to increase; nevertheless it always decreases in A7" .
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Table 4: Comparisons of optimized utility using different strategies and methods

Imp. of Asset Allocation
Strateties and Value of the Avg. Discounted Ruin
MPES-Realloca

methods Utility Surplus Prob.
tion stock  bond Al Al" A"
Grid-PR 796,883,205 796,883,205 16.16%  0.0074 0.4 0 0.2 0.2 0.2
Grid-IR 794,616,436 794,616,436 16.49%  0.0059 0.4 0 0.2 0.2 0.2
ES-PR 841,203,931 841,203,931 10.04% 0.01 0.4441 0 02284 0.1623 0.1652
ES-IR 849,424,629 849,424,629 8.97% 0.01 0.4751 0 02157 0.1130  0.1962

ES-Reallocation 925,653,245 925,653,245 — 0.01

Reallocations of five periods

0 0.3721 0 02043 02748  0.1488
s 0.4262 0 02664 0.1137 0.1937
—10 04328 0 03543 0.0158 0.1971
15 0.4249 0 0.3852 0 0.1899
0 0.2967 0 05254 0.0002 0.1777

avg. of the five reallocations 0.3905 0 03471 0.0809 0.1814
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C. Asset Allocations

The proportions of assets allocation will change when the ruin probability are changed,
as expected. The data in Table 5-1 and 5-2 indicates that the allocations of stocks are quite
similar across all the risk levels. However, the bonds seldom appear and just have tiny
proportions under all risk levels. Regarding three types of the alternative investment, the one

with high risk and high return gets much more apparently extended proportion when the risk
gets higher. The difference of the AI"™ allocation between its lowest point and highest point

is 0.5106. The allocation proportion of AI"is quite smaller than other assets in any panel.

When it compares with itself across the panels, we can find that it becomes smaller as soon as

the risk gets higher. The last assets 47" with low return and high risk distributed quite stably
at proportion 0.2 in all panels.
We also draw the average proportions of assets at each risk level in Figure 8. Although

the curve of stock seems descendant, as the risk gets higher, it still maintains the proportions at
the range 0.3 to 0.4. The curves of bonds, 4I” and A4I" allocations are quite smooth but

bonds and A" always keep at the low levels that almost reach zero. The curve of AI" is

the only one that insists as ascendant as the risk and its gradient is the greatest. At the
beginning the proportion of stocks is higher than 47" but the 4I™ starts to go beyond the
stocks at risk 0.02. The proportion of AI™ even could reach to 0.6 when risk is at 0.1.

We get some implications from the observations that the stocks and A/"" always take
the most part of the allocation but the bonds and 4I" take quite small ones. This reveals that
the returns of the stocks and A/ is relative high to other assets and even could weaken the
threat of the risks. Unfortunately, the conservation of the bond and 47" makes themselves
disappear immediately. Although AI” is associated with low return and high risk, it still

could be used to moderately regulate the risks of the stocks and 47" . That makes AI" keep

the stable position.
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Table 5-1: The asset allocations across risk levels using MPES-Reallocation for finding the optimal utility (ruin probabilities are from 0.005 to

0.03)
ruin prob.=0.005 ruin prob.=0.01 ruin prob.=0.015

stock bond  AI"™ A" AI" stock bond A" Al" A" stock bond  AI"™  AI" A"
t=0 0.3236 0.0000 0.1757 0.3766 0.1241 03721 0.0000 02043 02748 0.1488 0.4097 0.0000 0.1925 0.2143 0.1835
t=5 0.3598 0.1773 0.2135 0.0926 0.1568 0.4262 0.0000 02664 0.1137 0.1937 0.5064 0.0000 0.2659 0.0502 0.1775
t=10 0.4562 0.0000 0.3497 0.0241 0.1700 0.4328 0.0000 0.3543 0.0158 0.1971 0.4350 0.0000 0.4116 0.0000 0.1534
t=15 0.5520 0.0000 0.3449 0.0000 0.1031 0.4249 0.0000 0.3852 0 0.1899 0.3692 0.0000 0.4891 0.0041 0.1376
t=20 0.4205 0.0000 0.3666 0.0000 0.2129 0.2967 0.0000 0.5254 0.0002 0.1777 0.2349 0.0000 0.5262 0.0000 0.2389
Avg. 04224 0.0355 0.2901 0.0987 0.1534 0.39054 0.0000 0.3471 0.0809 0.1814 0.3910 0.0000 0.3771 0.0537 0.1782
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ruin prob.=0.02

ruin prob.=0.025

ruin prob.=0.03

stock  bond AI™ A" AI" stock  bond 4™ 41" AI" stock  bond  AI"™  AI" Al"
t=0 03728 0.0023 0.2388 0.2164 0.1697  0.4180 0.0000 0.2470 0.1701 0.1649  0.4357 0.0021 0.2435 0.1679 0.1508
t=5  0.5310 0.0000 0.2719 0.0075 0.1896  0.4761 0.0000 0.3130 0.0039 0.2070  0.4702 0.0000 0.3301 0.0000 0.1997
t=10 0.4433 0.0000 0.4120 0.0000 0.1447  0.4256 0.0006 0.4222 0.0004 0.1512  0.4648 0.0000 0.4289 0.0000 0.1063
=15 0.3902 0.0000 0.4867 0.0003 0.1228  0.2947 0.0000 0.5405 0.0000 0.1648  0.2645 0.0000 0.5830 0.0000 0.1525
t=20 0.2377 0.0000 0.5834 0.0000 0.1789  0.3138 0.0000 0.5823 0.0082 0.0957  0.2812 0.0000 0.6089 0.0000 0.1099
Avg. 03950 0.0005 0.3986 0.0448 0.1611 0.3856  0.0001 0.4210 0.0365 0.1567  0.3833 0.0004 0.4389 0.0336 0.1438
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Table 5-2: The asset allocations of MPES-Reallocation across risk levels for finding the optimal utility (ruin probabilities are from 0.04 to 0.1)

t=5

t=10
t=15
t=20

Avg.

ruin prob. =0.04

ruin prob. =0.05

ruin prob. =0.07

stock | bond  AI"™ 41" AI" stock  bond 4™  AI" A" stock bond  A4I"™  AI" A"
0.3762 0.0000 0.3076 0.1297 0.1865 0.3752 0.0000 0.3356 0.1050 0.1842 0.4172 0.0000 0.3661 0.0087 0.2080
0.4823 0.0000 0.3545 0.0000 0.1632 0.4371 0.0000 0.3991 0.0000 0.1638 0.4083 0.0000 0.4281 0.0000 0.1636
0.3601 0.0000 0.5006 0.0000 0.1393 0.4001 0.0000 0.4823 0.0000 0.1176 0.3395 0.0000 0.5587 0.0000 0.1018
0.3281 0.0000 0.5724 0.0000 0.0995 0.2983 0.0000 0.5875 0.0000 0.1142 0.2876 0.0000 0.6183 0.0000 0.0941
0.2775 0.0000 0.5833 0.0000 0.1392 0.2484 0.0000 0.6456 0.0000 0.1060 0.2144 0.0000 0.6677 0.0000 0.1179
0.3648 0.0000 0.4637 0.0259 0.1455 0.3518 0.0000 0.4900 0.0210 0.1372 0.3334 0.0000 0.5278 0.0017 0.1371
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Figure 8: The avg. of five-times asset allocations across ten risk levels using

MPES-Reallocation for finding the optimal utility

VIill. SUMMARIES AND CONCLUSIONS

We used the MPES to solve the hardship of the multi-period asset allocation for

property-casualty insurer. This issue is based on the views of asset and liability management

and therefore when the company pursuits the great wealth, it could consider not only the

assets return and risk but also the business liabilities. For the goal of this study, all the

experiments have to deal with more than a dozen controllable variables over real intervals.

The feasible region is therefore large and seldom tools can solve it in effective ways. To

verify the robust of our methodology MPES, we design some problems for solving by MPES

and compare the results with other tools. The results of the MPES indicated that this method

has sufficient superiority and reliability.

The main efforts of our study are constructing the models of five financial markets and

two insurance markets, simulating 10,000 paths of scenarios, making five strategies during
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twenty-five years. To understand the performance of our strategies, we designed two major

experiments. One is the grid search method the benchmark and the other is the MPES. Both

of them have to adopt the periodical and interval rebalance and even reallocation method.

These results of experiments were expressed and compared to each other under the objectives

of efficient frontier and utility value.

The order of the performance that we got regarding the surplus of the company is

MPES-Reallocation, MPES-IR, MPES-PR, Grid-IR and then Grid-PR. Therefore the

MPES-Reallocation is the best search method and strategy and the interval rebalance seemed

more proper than the periodical rebalance. As to the assets allocation in our experiments, the

high-return and high-risk objectives are more popular. These objectives such as stocks and

alternative investment with high-return and high-risk always take the most portion of the

allocation. It means that its return is high enough to compensate the punishment of the risk.

That successfully makes them outstanding among the assets. In the contrary, the conservative

ones disappeared immediately.

After all, the results demonstrate that the performance of the reallocation using MPES is

better than other methods in this study. The experiments of MPES also revealed some

interesting implications to us. In addition to the verification of the robust of MPES we have

made. Therefore we expect to apply it to study further applications and management issues of

the property-casualty insurers in the future.
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APPENDIX

Items Value

System parameters

» 10,000
25

|

Model parameters in the investment markets

(1) r a=0.07, b=0.2,v=10.017
(2) Stock l,=0.05 o04,=02
(3) Bond

kn 15

bp, (k=1L--,kn) [1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15,
1/15, 1/15, 1/15, 1/15]

(4) A]hh ILIAIhh :016, O-Alhh =0.4
(5) AI” ,LIAIH :008, O-AIH :Oll
(6) A]lh ’LIA]”' :0.10; O-Alhh :0.4

Model parameters of the insurance businesses

Prm, 2E+8
Ao 0.5
(1) long-tail business
t 10
f! 0.4
g’ 0.03

d (i=1,---,t") [0.4,0.2, 0.1, 0.05, 0.05, 0.05, 0.05, 0.04, 0.03, 0.03]
(1) short-tail business

¢ 3
£ 0.25
g’ 0.03

d; (i=1--,t") [0.8,0.1, 0.1]
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rules of asset adjustment

(1) periodical Adjusting every five years

(2) interval The changeable proportion of any asset is limited within +0.3.
This result in [, x0.7,8, x1.3] to be the boundary of the

proportions of asset allocation interval, where €, 1is the

proportion of an asset.

others

7, 0.05

k 2.5E+10
T 0.01

correlation matrix R

dWr dWSI dWAlhh dWA[” dWAIM dW'lrl
aw, 1 0.3 -0.2 -0.2 0.4 0.4
dw, -0.3 1 0.2 0.1 -0.3 -0.2
AW .. |02 0.2 1 0.3 -0.3 -0.3
dw .. |-02 0.1 0.3 1 -0.3 -0.3
dw .. |04 -0.3 0.3 0.3 1 0.2
dw,, 0.4 -0.2 -0.3 -0.3 0.2 1
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I. INTRODUCTION

The purpose of the following experiments is to understand whether the performance

of the reallocation is better then the rebalance. Furthermore, we are curious about how the

asset allocations would vary with different strategies and solution methods. The strategies of

this study mean the change frequency of asset allocations made by the insurers. They include

single-period, rebalance, and reallocation. The strategy single-period means the insurers make

only one asset allocation at the beginning of the investment and do not to interrupt the

allocation till to the end of the investment. The strategy rebalance means the insurers make

only one asset allocation at the beginning of the investment and periodically adjust the assets

back to the initial allocations they previous made. The strategy reallocation means the

insurers have to make new asset allocations periodically. The solution methods include GA

and Grid search method.

In these experiments, we use GA to solve the asset allocations problems and also use

Grid search method as a benchmark to solve the same problems. Through comparing these

results we can indirectly evaluate the performances of strategies and methods. We adopted

the Grid search method as a benchmark because it is a common and basic method that

researchers usually use it to compare with other methods. The other reason is that when
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people can not get an efficient method to solve their problems, the Grid search method is a
basic and easily executed one. However, the Grid search method can not solve the difficult
reallocation problem, so we just use it to solve the easier ones, rebalance and single-period.
We executed two categories of optimization problems in GA experiments. The
problems of first category are to find the optimized value of our utility function without any
constraints. The problems of the second category are also to find out the optimized value but
with some constraints. The constraints are some certain values that we set on the ruin
probability and the sigma value of the capital. The constrained values of the ruin probability
could be chosen from the seven default values 0.01, 0.02, 0.03, 0.04, 0.05 and 0.07, and the
sigma default values of the capital are 0.5E+09, 1E+09, 2E+09, 4E+09, 7E+09, 10E+09,
and 15E+09. Therefore, we can generate 49 combinations at most from the two sets of default
vales. We used GA solve the problems of rebalance and reallocation strategies. Therefore, this
study has one hundred GA experiments. In addition, we executed other 126 experiments® for
each of the rebalance and single-period strategies using Grid search method. The experiments
using Grid search method are easier than these using GA because we can simply get the

values of the asset allocations from figure combinations. The following table is concise

> The 126 experiments are executed by the diverse combinations of the asset allocations. This study has five
kinds of assets and the sum of the allocations of all assets must be one. Each value of the asset allocation can be
0, 02, 04, 06, and 08 as we set. Therefore, the number of combinations is

5! 5!
3x +2x
3m! 2121
[0.8,0.2,0,0,0],[0.4,0.2,0.2,0.2, 0], and [0.4, 0.4, 0.2, 0, 0]. The second addition term is the result from [0.6,

0.2,0.2,0,0] and [0.4, 0.4, 0.2, 0, 0]. The last two terms are the results from [1, 0, 0, 0, 0, 0] and [0.2, 0.2, 0.2,
0.2,0.2].)

+5+1=126 (The first addition term is the sum of permutations and combination in
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summary about the total experiments.

Table 1: Experiment design

Search method Asset Allocation Number of exp. Simplified Form
Strategies

Grid search method single-period 126 Grid_SP
rebalance 126 Grid_Reb
reallocation 50 GA Rea

GA rebalance 50 GA _Reb

In the following sections are the experiment results and analyses. The analyses

include (1) the comparisons of the efficient frontiers between different asset allocation

strategies and solution methods, (2) the comparisons of the optimized utility function values

and the portfolios, and (3) the changes of each asset allocation across different risks. The

related experiments parameters are set in the appendix.

1. ANALYSES ON EFFICIENT FRONTIER

Utilizing the efficient frontiers could provide us a quick look at the performance of

which method and which strategies is the best. The efficient frontier was first defined by

Markowitz (1952). He considers that an optimal portfolio should be one of the following two

situations— For any level of volatility, select one portfolio which has the highest expected

return from all portfolios with that same level of volatility. For any level of expected return,

select one portfolio which has the lowest volatility from all portfolios with that same
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expected return. When the investors undertake the different risks, there should be a portfolio
which can reach the greatest expected return at the risk level that they accept. The various
highest expected returns across the different risks would form a curve that is called the
efficient frontier.

The efficient frontier in Figure 2 is from the results of optimization with the certain
constraints in our 49 experiments. Actually, both of GA Rea and GA Reb have 7
experiments that we cannot find out the optimized value in all levels of ruin probability
associated with the value 0.5E+09 of the sigma of capital®®. Besides, we have omitted the
inefficient points from the figure. In the three-dimensional (3D) plot, the x axis and y axis
express two kinds of risks- ruin probability and sigma of the capital. The z axis is the mean of
the capital.

The whole distributions of the points in two plots of Grid search method are quite
similar (see Figure 2 (¢) and (d)). The points of GA Rea are spread over the wider areas in
the axis x, y and z. Nevertheless, the values of the ruin probabilities of the points are much
closed to each other under the same risk levels of sigma of capital in GA Reb plot. Although
the whole distributions of the points could be viewed briefly in 3D plots, the efficient frontier

is too hard to compare the performances of strategies and methods in this style.

26 The value 0.5E+09 of the sigma of the capital we set is too small to find out the optimized value.
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Figure 2: The efficient frontier of various strategies and methods in

three-dimension plots

The efficient frontier in two-dimension (2D) style is a valid way to understand the
performance relationship between the strategies and methods. We could choose one of the
risks to observe the efficient frontier. The risk we present here is the sigma of capital at a
certain ruin probability. However, this study cannot search out the optimized portfolio under
some risk levels we set. The interpolation is a popular method to create the points that we
need. After creating the new points, all the following 2D plots would be sketched at certain
value 0.015 of the ruin probability, and we would first discuss the results of single-period and
rebalance in Grid search method. Latter, we would compare the performances of reallocation
and rebalance in GA. Finally, a comprehensive analysis of the relationships between

strategies and all solution methods would be described together.
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In Figure 3, the performance of Grid Reb is better than Grid SP’s. The expected
return of the Grid Reb are greater 8.17%, 4.4%, 14.17%, 17.13%, 13.4% and 8.68% than
Grid_SP as the risks 3.00E+09, 3.50E+09, 4.00E+09, 5.00E+09, 6.50E+09, and 7.00E+09.
Two curves have positive growth, yet the growth rate of Grid Reb tends decrease and
Grid_SP always increases. However, the performance of the Grid Reb is still better than
Grid_SP. Even though the Grid SP grows beyond the Grid Reb after risk 7.00E+09, the

Grid_Reb would be more suitable the general and conservative insurers.

9.50E+08

9 00E+08 _—a— —&—Grid_Reb
8 SOE+08 A . ——Grid_SP
[u a / /

8.00E+08

7 50E+08 l/‘,//‘Jf”’,,,**”"ﬂ"#ﬂr

7.00E+08 s

period

/ T —
6.50E+08 //
6.00E+08 * . . .
2.00E+09 4.00E+09 6.00E+09 $.00E+09

The mean of the capital in each

The sigima ofthe capital in final period

Figure 3: The efficient frontier of Grid Reb and Grid_SP

In the GA part, the efficient frontier of reallocation is higher than that of rebalance, so

the performance of GA_Rea is greater than GA_Reb (see Figure 4). The differences between

all corresponding points from the left of two curves are 14.10%, 9.81%, 5.48%, 2.21%,

1.79%, 1.37%, and 0.69% under individual risk 4.50E+09, 5.00E+09, 5.50E+09, 6.00E+09,

6.50E+09, 7.00E+09, and 7.50E+09. The growths of both curves are positive and their

growth speeds tend to decline. It look similar as Grid part, two curves gradually meet



together after the risk 7.00E+09.

1.05E+09 et
e (T -
1.00E+09 S — i €
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9.00E+08 o

the mean of the capital in
each period

8.50E+08

8.00E+08 // ,/

7.50E+08 . . .
2E+09 4E+09 GE+09 8E+09

sigma of the capital in final period

Figure 4: The efficient frontier of the GA Rea and GA_Reb

The performances of all strategies and solution methods arranged from high to low

are GA_Rea, GA_Reb, Grid Reb, and Grid SP (GA_Rea, Grid Reb, GA Reb, and Grid SP

when the risk is before 5.50E+09) in Figure 5. The curves of GA_Reb and Grid Reb intersect

at risk about 5.50E+09. It denotes that Grid_ Reb is better than GA_Reb when the risk is not

so high. As the risk is getting higher, the expected return of GA_ Reb is preferable to

Grid_Reb. For the GA and the Grid search method, the GA_Rea and the Grid Reb have the

best performance individually. The difference between GA Rea and Grid Reb are 14.02%,

13.02%, 9.57%, 4.26%, 4.42%, and 8.61% at the corresponding points under the same risk

and from the lower left of the curves.
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Figure 5: The efficient frontier of all strategies and methods

I11LANALYSES ON UTILITIES

When optimization problems are without any constraints, the values of the objective

function arranged from the greatest to the worst in Table 2 are GA Rea, GA_Reb, Grid_Reb,

and Grid_SP. The utility value of GA_Rea is better 2.5%, 12.1% and 12.7% than GA_Reb,

Grid_Reb, and Grid_SP. The optimization problems are without any constraints, so the sigma

of the capital and the ruin probability are not limited within some ranges. However, relative

to the Grid search method, the ruin probabilities of GA Rea and GA Reb are much closed to

the value 0.01 (not exceed yet). The value 0.01 is our punitive boundary that the optimized

value would be deducted once the ruin probability is beyond this default value.

As to the asset allocations of all strategies and methods are shown in Figure 6. The

Al-hh takes the greatest portion of the asset allocation in GA_Rea and in GA_Reb when the

stock takes the biggest part in Grid Reb and in Grid_SP. The bond takes the smallest portion

of the asset allocations in all strategies and methods. The whole distribution of assets of
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Grid_Reb and Grid_SP are the same.
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Figure 6: The different asset allocations between various strategies and methods

IV. ANALYSES ON ASSET ALLOCATIONS

We choose the GA_ Reallocaiton which has the best performance as the object for

analyzing the changes of asset allocation across different risks. The data is from the

optimization results of the objective function with constraints. For simplify, we adopt the

so-called integrated risk as the observed risk. The integrated risk is the sum of the two parts

of risk in our objective function. Finally, we averaged the allocations of all experiments for

each kind of assets across different integrated risks.
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Table 2: The results of find the optimized objective vale using various strategies and methods

Mean Risk

Asset allocation

The value of The degree of the The mean of  Sigma of the  Ruin prob.

utility function utility value improved the capital capital in the
by GA Reallocation final period Stock Bond Al-hh  AI-ll  Al-lh
GA Rea
927,699,346 - 1,032,838,326 8,761,581,673 0.0098 t=1  0.1810 0.0183 0.3055 0.2745 0.2207
t=7 0.2389 0.0526 0.4050 0.1593 0.1442
t=13  0.2519 0.0721 0.5009 0.0121 0.1630
t=19  0.2237 0.1700 0.3973 0.0668 0.1422
Avg. 0.2239 0.0783 0.4022 0.1282 0.1675
GA — Periodical Rebalance
905,175,255 2.5% 989,624,799  6,929,128,680 0.01 0.3118 0.0009 0.3217 0.1948 0.1708
Grid — Periodical Rebalance
827,707,091 12.1% 886,285,207 4,881,509,679 0.0038 0.4 0 0.2 0.2 0.2
Grid-one period
822,971,133 12.7% 912,802,369 7,485,936,406 0.0038 0.4 0 0.2 0.2 0.2
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Figure 7: The changes of asset allocation across different risks in GA_ Rea

The asset allocations of optimization for the objective function with constraints across
risks are shown in Figure 7. The bond and AI-Il have the more portions in the asset allocation
at the lowest integrated risk but they take the small parts at the highest risk. On the contrary,
Al-hh has the opposite situation to the bond and Al-1l. According to the relationship between
the asset allocation and risks in Figure 7, the insurer may allocate more funds on the bond and
Al-1l when he plans a conservative investment. The insurer may also allocate more money on
the Al-hh and some funds on the stock and Al-hl but little on the bond and AI-II if he tries to
get more expected return under the risky markets.

Regarding the view on the whole tendency of the lines, most assets change their
allocations greatly at the risk 1.08E+08 and gets steady after that risk. The AI-hh almost

obtains the greatest proportion about 0.4. However, the risk 8.47E+08 is the second turning
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point and the Al-hh even can reach the allocation 0.5762. The stock almost changes its

allocation between 0.2 and 0.3. The changes of Al-hl and AI-ll are quite similar and their

fluctuations occur within the range 0.1 and 0.2. The bond nearly stays under the position 0.1.
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